Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Infect ; 87(3): 242-254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406777

RESUMO

OBJECTIVES: Booster doses for COVID-19 vaccinations have been shown to amplify the waning immune response after primary vaccination and to enhance protection against emerging variants of concern (VoCs). Here, we aimed to assess the immunogenicity and safety of a booster dose of an inactivated whole-virus COVID-19 vaccine (VLA2001) after primary vaccination with 2 doses of either VLA2001 or ChAdOx1-S (Oxford-Astra Zeneca), including the cross-neutralization capacity against the Delta and Omicron VoCs. METHODS: This interim analysis of an open-label extension of a randomized, controlled phase 3 trial assessed a single booster dose of an inactivated whole-virus COVID-19 vaccine (VLA2001) in healthy or medically stable adults aged 18 years and above, recruited in 21 clinical sites in the UK, who had previously received two doses of either VLA2001 or ChAdOx1-S. Safety outcomes were frequency and severity of solicited injection site and systemic reactions within 7 days after booster vaccination as well as frequency and severity of any unsolicited adverse events (AE) after up to 6 months. Immunogenicity outcomes were the immune response to ancestral SARS-CoV-2 assessed 14 days post booster expressed as geometric mean titres (GMT), GMT fold ratios and seroconversion of specific neutralizing antibodies and S-protein binding IgG antibodies. Immunogenicity against the Delta and Omicron VoCs was assessed as a post-hoc outcome with a pseudovirus neutralization antibody assay. This study is registered with ClinicalTrials.gov, NCT04864561, and is ongoing. RESULTS: A booster dose of VLA2001 was administered to 958 participants, of whom 712 had been primed with VLA2001, and 246 with ChAdOx1-S. Within 7 days following these booster doses, 607 (63.4%) participants reported solicited injection site reactions, and 487 (50.8%) reported solicited systemic reactions. Up to 14 days post booster, 751 (78.4%) participants reported at least one adverse event. The tolerability profile of a booster dose of VLA2001 was similar in VLA2001-primed and ChAdOx1-S-primed participants. In VLA2001-primed participants, the GMT (95% CI) of neutralizing antibodies increased from 32.5 (22.8, 46.3) immediately before to 521.5 (413.0, 658.6) 2 weeks after administration of the booster dose, this corresponds to a geometric mean fold rise (GMFR) of 27.7 (20.0, 38.5). Compared to 2 weeks after the second priming dose, the GMFR was 3.6 (2.8, 4.7). In the ChAdOx1-S primed group, the GMT (95% CI) of neutralizing antibodies increased from 65.8 (43.9, 98.4) immediately before to 188.3 (140.3, 252.8) 2 weeks after administration of the booster dose, a geometric mean fold rise (GMFR) of 3.0 (2.2, 4.0). Compared to 2 weeks after the second priming dose, the GMFR was 1.6 (1.1, 2.2). For S-protein binding IgG antibodies, the pre- versus post-booster GMT fold ratio (95% CI) was 34.6 (25.0, 48.0) in the VLA2001-primed group and 4.0 (3.0, 5.2) in the ChAdOx1-S-primed group. Compared to 2 weeks after the second priming dose, the GMT fold rise of IgG antibodies was 3.8 (3.2, 4.6) in the VLA2001-primed group and 1.2 (0.9, 1.6) in the ChAdOx1-S-primed group. The GMT against Delta (B.1.617.2) and Omicron (BA.4/5) increased from 4.2 to 260, and from 2.7 to 56.7, respectively, when boosting subjects previously primed with VLA2001. Following the boost, 97% of subjects primed with VLA2001 had detectable Delta- and 94% Omicron-neutralizing antibodies. In subjects primed with ChAdOx1-S, the GMT against Delta and Omicron titres increased from 9.1 to 92.5, and from 3.6 to 12.3, respectively. After boosting, 99% of subjects primed with ChAdOx1-S had detectable Delta- and 70% Omicron-neutralizing antibodies. In both VLA2001 and ChAdOx1-S primed subjects, the additional VLA2001 dose boosted T cell responses against SARS-CoV-2 antigens to levels above those observed before the booster dose. CONCLUSION: A booster dose of VLA2001 was safe and well tolerated after primary immunization with VLA2001 and ChAdOx1-S. The tolerability of a booster dose of VLA2001 was similar to the favourable profile observed after the first and second priming doses. Both in a homologous and a heterologous setting, boosting resulted in higher neutralizing antibody titres than after primary immunization and significant increases in cross-neutralization titres against Delta and Omicron were observed after the booster dose. These data support the use of VLA2001 in booster programmes in ChadOx1-S primed groups.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais , Imunogenicidade da Vacina
2.
J Infect Dis ; 225(8): 1399-1410, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32313928

RESUMO

BACKGROUND: A vaccine (HB-101) consisting of 2 nonreplicating lymphocytic choriomeningitis virus (LCMV) vectors expressing the human cytomegalovirus antigens glycoprotein B (gB) and the 65-kD phosphoprotein (pp65), respectively, is in development to prevent cytomegalovirus infection. METHODS: HB-101 was tested in cytomegalovirus-naive, healthy adults in a randomized, double-blind, placebo-controlled, dose-escalation Phase I trial. Fifty-four subjects received low, medium, or high dose of HB-101 or placebo by intramuscular administration at Month 0, 1, and 3. Safety and immunogenicity were the respective primary and secondary endpoints. Subjects were followed for 12 months after the initial immunization. RESULTS: Vaccination was associated with transient mild to moderate adverse events. HB-101 administration induced dose-dependent gB- and pp65-specific cellular responses, dominated by pp65-specific CD8 T cells, a high fraction of which were polyfunctional. Two administrations were sufficient to elicit dose-dependent gB-binding and cytomegalovirus-neutralizing antibodies (Abs). Cytomegalovirus-specific immune responses were boosted after each administration. Only 1 of 42 vaccine recipients mounted a transient LCMV vector-neutralizing Ab response. CONCLUSIONS: HB-101 was well tolerated and induced cytomegalovirus-specific polyfunctional CD8 T-cell and neutralizing Ab responses in the majority of subjects. Lack of vector-neutralizing Ab responses should facilitate booster vaccinations. These results justify further clinical evaluation of this vaccine candidate.


Assuntos
Vacinas contra Citomegalovirus , Vacinas , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Citomegalovirus/genética , Humanos , Imunização Secundária , Vírus da Coriomeningite Linfocítica/genética
3.
J Virol Methods ; 301: 114440, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954306

RESUMO

Traditional virus infectivity titration methods for lymphocytic choriomeningitis virus (LCMV) are laborious, time-consuming, and low-throughput (e.g., focus forming unit (FFA) assay). In this report, we developed a high-throughput reverse transcription quantitative PCR (RT-qPCR)-based virus infectivity assay for relative quantitation of a live, recombinant replicating LCMV -based viral vector (TT1). This in vitro infectivity assay demonstrated a 4-log linear range for TT1 titer quantitation. A high positive Pearson correlation coefficient value (≥ 0.80) was obtained between the RT-qPCR vs. the "gold-standard" FFU assay when comparing the stability profiles of stressed TT1 vector samples. In addition to the RT-qPCR infectivity assay, the stability of the TT1 vector upon freeze-thaw stress was investigated further with complementary viral particle characterization techniques (e.g., TEM, NTA, MFI). Correlations between viral infectivity and particle measurements during forced degradation studies were observed to be specific to the TT1 vector and its various formulations and such results facilitated the rank-ordering of formulation conditions. Overall, this infectivity RT-qPCR method showed increased sample throughput and improved assay flexibility compared to traditional viral infectivity assays. These results are discussed in the context of enabling future TT1 vector formulation development work, and potential utilization as an in-process monitoring tool during TT1 vector manufacturing.


Assuntos
Coriomeningite Linfocítica , Vetores Genéticos , Humanos , Vírus da Coriomeningite Linfocítica/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Clin Med ; 8(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810187

RESUMO

Bone marrow derived mesenchymal stromal cells (BM-MSCs) have emerged as a possible new therapy for Multiple Sclerosis (MS), however studies regarding efficacy and in vivo immune response have been limited and inconclusive. We conducted a phase I clinical study assessing safety and clinical and peripheral immune responses after MSC therapy in MS. Seven patients with progressive MS were intravenously infused with a single dose of autologous MSC (1-2 × 106 MSCs/kg body weight). The infusions were safe and well tolerated when given during clinical remission. Five out of seven patients completed the follow up of 48 weeks post-infusion. Brain magnetic resonance imaging (MRI) showed the absence of new T2 lesions at 12 weeks in 5/6 patients, while 3/5 had accumulated new T2 lesions at 48 weeks. Patient expanded disability status scales (EDSS) were stable in 6/6 at 12 weeks but declined in 3/5 patients at 48 weeks. Early changes of circulating microRNA levels (2 h) and increased proportion of FOXP3+ Tregs were detected at 7 days post-infusion compared to baseline levels. In conclusion, MSC therapy was safe and well tolerated and is associated with possible transient beneficial clinical and peripheral immunotolerogenic effects.

5.
Vaccine ; 35(1): 1-9, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27899229

RESUMO

An important focus in vaccine research is the design of vaccine vectors with low seroprevalence and high immunogenicity. Replication-incompetent lymphocytic choriomeningitis virus (rLCMV) vectors do not elicit vector-neutralizing antibody responses, and homologous prime-boost regimens with rLCMV vectors induce boostable and protective T cell responses to model antigens in mice. However, cellular and humoral immune responses following homologous rLCMV vaccine regimens have not been rigorously evaluated in non-human primates (NHPs). To test whether rLCMV vectors constitute an effective vaccine platform in NHPs, we developed rLCMV vectors expressing SIVmac239 Env and Gag antigens and assessed their immunogenicity in mice and cynomolgus macaques. Immunization with rLCMV vaccine vectors expressing SIV Env and Gag was effective at generating SIV-specific T cell and antibody responses in both mice and NHPs. Epitope mapping using SIV Env in C57BL/6 mice demonstrated that rLCMV vectors induced sustained poly-functional responses to both dominant and subdominant epitopes. Our results suggest the potential of rLCMV vectors as vaccine candidates. Future SIV challenge experiments in rhesus macaques will be needed to assess immune protection by these vaccine vectors.


Assuntos
Antígenos Virais/imunologia , Portadores de Fármacos , Vírus da Coriomeningite Linfocítica/genética , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Macaca fascicularis , Camundongos Endogâmicos C57BL , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
Clin Vaccine Immunol ; 24(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795301

RESUMO

Subunit vaccines for prevention of congenital cytomegalovirus (CMV) infection based on glycoprotein B (gB) and pp65 are in clinical trials, but it is unclear whether simultaneous vaccination with both antigens enhances protection. We undertook evaluation of a novel bivalent vaccine based on nonreplicating lymphocytic choriomeningitis virus (rLCMV) vectors expressing a cytoplasmic tail-deleted gB [gB(dCt)] and full-length pp65 from human CMV in mice. Immunization with the gB(dCt) vector alone elicited a comparable gB-binding antibody response and a superior neutralizing response to that elicited by adjuvanted subunit gB. Immunization with the pp65 vector alone elicited robust T cell responses. Comparable immunogenicity of the combined gB(dCt) and pp65 vectors with the individual monovalent formulations was demonstrated. To demonstrate proof of principle for a bivalent rLCMV-based HCMV vaccine, the congenital guinea pig cytomegalovirus (GPCMV) infection model was used to compare rLCMV vectors encoding homologs of pp65 (GP83) and gB(dCt), alone and in combination versus Freund's adjuvanted recombinant gB. Both vectors elicited significant immune responses, and no loss of gB immunogenicity was noted with the bivalent formulation. Combined vaccination with rLCMV-vectored GPCMV gB(dCt) and pp65 (GP83) conferred better protection against maternal viremia than subunit or either monovalent rLCMV vaccine. The bivalent vaccine also was significantly more effective in reducing pup mortality than the monovalent vaccines. In summary, bivalent vaccines with rLCMV vectors expressing gB and pp65 elicited potent humoral and cellular responses and conferred protection in the GPCMV model. Further clinical trials of LCMV-vectored HCMV vaccines are warranted.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Portadores de Fármacos , Vírus da Coriomeningite Linfocítica/genética , Fosfoproteínas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Citomegalovirus/congênito , Vacinas contra Citomegalovirus/administração & dosagem , Modelos Animais de Doenças , Feminino , Cobaias , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Linfócitos T/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
7.
Neuroimage Clin ; 12: 1004-1012, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995066

RESUMO

The S100B protein is an intra-cellular calcium-binding protein that mainly resides in astrocytes in the central nervous system. The serum level of S100B is used as biomarker for the severity of brain damage in traumatic brain injury (TBI) patients. In this study we investigated the relationship between intrinsic resting-state brain connectivity, measured 1-22 days (mean 8 days) after trauma, and serum levels of S100B in a patient cohort with mild-to-severe TBI in need of neuro-intensive care in the acute phase. In line with previous investigations, our results show that the peak level of S100B acquired during the acute phase of TBI was negatively correlated with behavioral measures (Glasgow Outcome Score, GOS) of functional outcome assessed 6 to 12 months post injury. Using a multi-variate pattern analysis-informed seed-based correlation analysis, we show that the strength of resting-state brain connectivity in multiple resting-state networks was negatively correlated with the peak of serum levels of S100B. A negative correspondence between S100B peak levels recorded 12-36 h after trauma and intrinsic connectivity was found for brain regions located in the default mode, fronto-parietal, visual and motor resting-state networks. Our results suggest that resting-state brain connectivity measures acquired during the acute phase of TBI is concordant with results obtained from molecular biomarkers and that it may hold a capacity to predict long-term cognitive outcome in TBI patients.


Assuntos
Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Adolescente , Adulto , Idoso , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Gen Virol ; 97(6): 1426-1438, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974598

RESUMO

Kidney epithelial cells are common targets for human and rhesus cytomegalovirus (HCMV and RhCMV) in vivo, and represent an important reservoir for long-term CMV shedding in urine. To better understand the role of kidney epithelial cells in primate CMV natural history, primary cultures of rhesus macaque kidney epithelial cells (MKE) were established and tested for infectivity by five RhCMV strains, including two wild-type strains (UCD52 and UCD59) and three strains containing different coding contents in UL/b'. The latter strains included 180.92 [containing an intact RhUL128-RhUL130-R hUL131 (RhUL128L) locus but deleted for the UL/b' RhUL148-rh167-loci], 68-1 (RhUL128L-defective and fibroblast-tropic) and BRh68-1.2 (the RhUL128L-repaired version of 68-1). As demonstrated by RhCMV cytopathic effect, plaque formation, growth kinetics and early virus entry, we showed that MKE were differentially susceptible to RhCMV infection, related to UL/b' coding contents of the different strains. UCD52 and UCD59 replicated vigorously in MKE, 68-1 replicated poorly, and 180.92 grew with intermediate kinetics. Reconstitution of RhUL128L in 68-1 (BRh68-1.2) restored its replication efficiency in MKE as compared to UCD52 and UCD59, consistent with the essential role of UL128L for HCMV epithelial tropism. Further analysis revealed that the UL/b' UL148-rh167-loci deletion in 180.92 impaired RhUL132 (rh160) expression. Given that 180.92 retains an intact RhUL128L, but genetically or functionally lacks genes from RhUL132 (rh160) to rh167 in UL/b', its attenuated infection efficiency indicated that, along with RhUL128L, an additional protein(s) encoded within the UL/b' RhUL132 (rh160)-rh167 region (potentially, RhUL132 and/or RhUL148) is indispensable for efficient replication in MKE.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Células Epiteliais/virologia , Rim/citologia , Macaca mulatta/virologia , Animais , Células Cultivadas , Citomegalovirus/fisiologia , Efeito Citopatogênico Viral , Ensaio de Placa Viral , Internalização do Vírus , Replicação Viral
9.
J Virol ; 90(10): 4926-38, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937030

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and is the leading viral cause of birth defects after congenital infection. HCMV infection relies on the recognition of cell-specific receptors by one of the viral envelope glycoprotein complexes. Either the gH/gL/gO or the gH/gL/UL128/UL130/UL131A (Pentamer) complex has been found to fulfill this role, accounting for HCMV entry into almost all cell types. We have studied the UL116 gene product, a putative open reading frame identified by in silico analysis and predicted to code for a secreted protein. Virus infection experiments in mammalian cells demonstrated that UL116 is expressed late in the HCMV replication cycle and is a heavily glycosylated protein that first localizes to the cellular site of virus assembly and then inserts into the virion envelope. Transient-transfection studies revealed that UL116 is efficiently transported to the plasma membrane when coexpressed with gH and that gL competes with UL116 for gH binding. Further evidence for gH/UL116 complex formation was obtained by coimmunoprecipitation experiments on both transfected and infected cells and biochemical characterization of the purified complex. In summary, our results show that the product of the UL116 gene is an HCMV envelope glycoprotein that forms a novel gH-based complex alternative to gH/gL. Remarkably, the gH/UL116 complex is the first herpesvirus gH-based gL-less complex. IMPORTANCE: HCMV infection can cause severe disease in immunocompromised adults and infants infected in utero The dissection of the HCMV entry machinery is important to understand the mechanism of viral infection and to identify new vaccine antigens. The gH/gL/gO and gH/gL/UL128/UL130/UL131 (Pentamer) complexes play a key role in HCMV cell entry and tropism. Both complexes are formed by an invariant gH/gL scaffold on which the other subunits assemble. Here, we show that the UL116 gene product is expressed in infected cells and forms a heterodimer with gH. The gH/UL116 complex is carried on the infectious virions, although in smaller amounts than gH/gL complexes. No gH/UL116/gL ternary complex formed in transfected cells, suggesting that the gH/UL116 complex is independent from gL. This new gH-based gL-free complex represents a potential target for a protective HCMV vaccine and opens new perspectives on the comprehension of the HCMV cell entry mechanism and tropism.


Assuntos
Citomegalovirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Citomegalovirus/química , Genoma Viral , Humanos , Microscopia Eletrônica , Mutação , Multimerização Proteica , Transfecção , Proteínas do Envelope Viral/química , Montagem de Vírus , Internalização do Vírus
10.
Nat Commun ; 6: 8176, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365435

RESUMO

Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos Virais/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Antígenos Virais/química , Antígenos Virais/ultraestrutura , Cristalização , Cristalografia por Raios X , Citomegalovirus/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoprecipitação , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura
11.
Biotechnol Bioeng ; 112(12): 2505-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26058896

RESUMO

Human cytomegalovirus (HCMV) causes significant disease worldwide. Multiple HCMV vaccines have been tested in man but only partial protection has been achieved. The HCMV gH/gL/UL128/UL130/UL131A complex (Pentamer) is the main target of neutralizing antibodies in HCMV seropositive individuals and raises high titers of neutralizing antibodies in small animals and non-human primates (NHP). Thus, Pentamer is a promising candidate for an effective HCMV vaccine. Development of a Pentamer-based subunit vaccine requires expression of high amounts of a functional and stable complex. We describe here the development of a mammalian expression system for large scale Pentamer production. Several approaches comprising three different CHO-originated cell lines and multiple vector as well as selection strategies were tested. Stable cell pools expressed the HCMV Pentamer at a titer of approximately 60 mg/L at laboratory scale. A FACS-based single cell sorting approach allowed selection of a highly expressing clone producing Pentamer at the level of approximately 400 mg/L in a laboratory scale fed-batch culture. Expression in a 50 L bioreactor led to the production of HCMV Pentamer at comparable titers indicating the feasibility of further scale-up for manufacturing at commercial scale. The CHO-produced HCMV Pentamer bound to a panel of human neutralizing antibodies and raised potently neutralizing immune response in mice. Thus, we have generated an expression system for the large scale production of functional HCMV Pentamer at high titers suitable for future subunit vaccine production.


Assuntos
Células CHO , Vacinas contra Citomegalovirus/imunologia , Expressão Gênica , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Cricetulus , Citomegalovirus/genética , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/metabolismo , Camundongos , Multimerização Proteica , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(19): 6056-61, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918416

RESUMO

Varicella-zoster virus (VZV), of the family Alphaherpesvirinae, causes varicella in children and young adults, potentially leading to herpes zoster later in life on reactivation from latency. The conserved herpesvirus glycoprotein gB and the heterodimer gHgL mediate virion envelope fusion with cell membranes during virus entry. Naturally occurring neutralizing antibodies against herpesviruses target these entry proteins. To determine the molecular basis for VZV neutralization, crystal structures of gHgL were determined in complex with fragments of antigen binding (Fabs) from two human monoclonal antibodies, IgG-94 and IgG-RC, isolated from seropositive subjects. These structures reveal that the antibodies target the same site, composed of residues from both gH and gL, distinct from two other neutralizing epitopes identified by negative-stain electron microscopy and mutational analysis. Inhibition of gB/gHgL-mediated membrane fusion and structural comparisons with herpesvirus homologs suggest that the IgG-RC/94 epitope is in proximity to the site on VZV gHgL that activates gB. Immunization studies proved that the anti-gHgL IgG-RC/94 epitope is a critical target for antibodies that neutralize VZV. Thus, the gHgL/Fab structures delineate a site of herpesvirus vulnerability targeted by natural immunity.


Assuntos
Anticorpos Neutralizantes/química , Glicoproteínas/química , Herpesvirus Humano 3/imunologia , Proteínas do Envelope Viral/química , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Epitopos/química , Humanos , Fragmentos de Imunoglobulinas/química , Camundongos , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
13.
Proc Natl Acad Sci U S A ; 112(6): 1767-72, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624487

RESUMO

Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading viral cause of birth defects after congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are key targets of the human humoral response against HCMV and are required for HCMV entry into fibroblasts and endothelial/epithelial cells, respectively. We expressed and characterized soluble forms of gH/gL, gH/gL/gO, and Pentamer. Mass spectrometry and mutagenesis analysis revealed that gL-Cys144 forms disulfide bonds with gO-Cys351 in gH/gL/gO and with UL128-Cys162 in the Pentamer. Notably, Pentamer harboring the UL128-Cys162Ser/gL-Cys144Ser mutations had impaired syncytia formation and reduced interference of HCMV entry into epithelial cells. Electron microscopy analysis showed that HCMV gH/gL resembles HSV gH/gL and that gO and UL128/UL130/UL131A bind to the same site at the gH/gL N terminus. These data are consistent with gH/gL/gO and Pentamer forming mutually exclusive cell entry complexes and reveal the overall location of gH/gL-, gH/gL/gO-, and Pentamer-specific neutralizing antibody binding sites. Our results provide, to our knowledge, the first structural view of gH/gL/gO and Pentamer supporting the development of vaccines and antibody therapeutics against HCMV.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Anticorpos Neutralizantes/imunologia , Sítios de Ligação/genética , Western Blotting , Cromatografia de Afinidade , Sequência Conservada/genética , Citomegalovirus/metabolismo , Dissulfetos/metabolismo , Citometria de Fluxo , Humanos , Processamento de Imagem Assistida por Computador , Espectrometria de Massas , Glicoproteínas de Membrana/química , Microscopia Eletrônica , Complexos Multiproteicos/química , Mutagênese , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Proteínas do Envelope Viral/química
14.
Neuroimage Clin ; 7: 230-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25610785

RESUMO

OBJECTIVE: The aim of this study was to evaluate the clinical use of a method to assess hemispheric language dominance in pediatric candidates for epilepsy surgery. The method is designed for patients but has previously been evaluated with healthy children. METHODS: Nineteen patients, 8-18 years old, with intractable epilepsy and candidates for epilepsy surgery were assessed. The assessment consisted of two functional MRI protocols (fMRI) intended to target frontal and posterior language networks respectively, and a behavioral dichotic listening task (DL). Regional left/right indices for each fMRI task from the frontal, temporal and parietal lobe were calculated, and left/right indices of the DL task were calculated from responses of consonants and vowels, separately. A quantitative analysis of each patient's data set was done in two steps based on clearly specified criteria. First, fMRI data and DL data were analyzed separately to determine whether the result from each of these assessments were conclusive or not. Thereafter, the results from the individual assessments were combined to reach a final conclusion regarding hemispheric language dominance. RESULTS: For 14 of the 19 subjects (74%) a conclusion was reached about their hemispheric language dominance. Nine subjects had a left-sided and five subjects had a right-sided hemispheric dominance. In three cases (16%) DL provided critical data to reach a conclusive result. CONCLUSIONS: The success rate of conclusive language lateralization assessments in this study is comparable to reported rates on similar challenged pediatric populations. The results are promising but data from more patients than in the present study will be required to conclude on the clinical applicability of the method.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia/cirurgia , Lateralidade Funcional/fisiologia , Idioma , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Cuidados Pré-Operatórios
15.
Mol Ther ; 22(12): 2118-2129, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25027661

RESUMO

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Imunidade Celular , RNA Mensageiro/imunologia , RNA Viral/imunologia , Vacinas de DNA/administração & dosagem , Animais , Cátions , Emulsões/química , Feminino , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos
16.
Vaccine ; 32(30): 3796-804, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24837507

RESUMO

Human cytomegalovirus (HCMV) is a member of the ß-herpesvirus family that causes significant disease worldwide. Although evidence exists that neutralizing antibodies and cytotoxic T cell responses to HCMV antigens can prevent HCMV disease and/or infection, there are no approved vaccines to prevent HCMV disease. Over the past 10 years, multiple HCMV vaccines have been tested in man but only partial protection has been achieved in these studies. HCMV contains multiple surface-expressed glycoproteins that are critical to viral entry, including gB, the gM/gN complex, the gH/gL complex, and a pentameric gH/gL/UL128/UL130/UL131A complex. Recently we showed that viral replicon particles (VRPs) expressing the gH/gL complex elicited more potently neutralizing antibodies than VRPs expressing gB in mice. Here we compare the immunogenicity of VRPs encoding the HCMV gH/gL and pentameric complexes, as well as purified gH/gL and pentameric complexes administered in the presence or absence of the MF59 adjuvant. The results of these studies indicate that the pentameric complex elicits significantly higher levels of neutralizing antibodies than the gH/gL complex, and that MF59 significantly increases the potency of each complex. In addition, we show that animals immunized with pentamer encoding VRPs or the pentameric subunit produce antibodies that recognize a broad range of antigenic sites on the complex. Taken together, these studies support the utility of the pentameric complex in HCMV vaccine candidates.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Citomegalovirus/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Especificidade de Anticorpos , Citomegalovirus , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/imunologia , Polissorbatos/farmacologia , Replicon , Esqualeno/farmacologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
17.
Int J Cancer ; 133(5): 1204-13, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23404447

RESUMO

Cytomegalovirus is highly prevalent in glioblastomas. In 2006, we initiated a randomized, double-blind, placebo-controlled, hypothesis-generating study to examine the safety and potential efficacy of Valganciclovir as an add-on therapy for glioblastoma. Forty-two glioblastoma patients were randomized in double-blind fashion to receive Valganciclovir or placebo in addition to standard therapy for 6 months. Magnetic resonance images were obtained before and immediately and 3 and 6 months after surgery to evaluate treatment efficacy by measuring contrast enhancing tumor volume (primary end point). Survival data were analyzed for patients and controls in explorative analyses to aid the design of future randomized trials. Trends but no significant differences were observed in tumor volumes in Valganciclovir and placebo patients at 3 (3.58 vs. 7.44 cm3, respectively, p = 0.2881) and 6 (3.31 vs. 13.75 cm3, p = 0.2120) months. Median overall survival (OS) was similar in both groups (17.9 vs. 17.4 months, p = 0.430). Patients could take Valganciclovir for compassionate use after the study phase. Explorative analyses showed an OS of 24.1 months (95% CI, 17.4-40.3) in patients receiving >6 months of Valganciclovir (Val > 6M) versus 13.1 months (95% CI, 7.9-17.7, p < 0.0001) in patients receiving Valganciclovir for 0 or <6 months, and 13.7 months (95% CI, 6.9-17.3, p = 0.0031) in contemporary controls. OS at 4 years was 27.3% in Val>6M patients versus 5.9% in controls (p = 0.0466). Prolonged OS in Val>6M patients suggest that future randomized trials are warranted and should evaluate whether continuous antiviral treatment can improve outcome in glioblastoma patients.


Assuntos
Antivirais/uso terapêutico , Neoplasias Encefálicas/virologia , Citomegalovirus/efeitos dos fármacos , Ganciclovir/análogos & derivados , Glioblastoma/virologia , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Método Duplo-Cego , Feminino , Ganciclovir/efeitos adversos , Ganciclovir/uso terapêutico , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Valganciclovir
18.
Magn Reson Imaging ; 31(3): 385-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23200683

RESUMO

A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
19.
Vaccine ; 31(6): 919-26, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23246547

RESUMO

Human cytomegalovirus (hCMV) is prevalent worldwide with infection generally being asymptomatic. Nevertheless, hCMV infection can lead to significant morbidity and mortality. Primary infection of seronegative women or reactivation/re-infection of seropositive women during pregnancy can result in transmission to the fetus, leading to severe neurological defects. In addition, hCMV is the most common viral infection in immunosuppressed organ transplant recipients and can produce serious complications. Hence, a safe and effective vaccine to prevent hCMV infection is an unmet medical need. Neutralizing antibodies to several hCMV glycoproteins, and complexes thereof, have been identified in individuals following hCMV infection. Interestingly, a portion of the CMV-specific neutralizing antibody responses are directed to epitopes found on glycoprotein complexes but not the individual proteins. Using an alphavirus replicon particle (VRP) vaccine platform, we showed that bicistronic VRPs encoding hCMV gH and gL glycoproteins produce gH/gL complexes in vitro. Furthermore, mice vaccinated with these gH/gL-expressing VRPs produced broadly cross-reactive complement-independent neutralizing antibodies to hCMV. These neutralizing antibody responses were of higher titer than those elicited in mice vaccinated with monocistronic VRPs encoding gH or gL antigens, and they were substantially more potent than those raised by VRPs encoding gB. These findings underscore the utility of co-delivery of glycoprotein components such as gH and gL for eliciting potent, broadly neutralizing immune responses against hCMV, and indicate that the gH/gL complex represents a potential target for future hCMV vaccine development.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais/imunologia , Alphavirus/genética , Animais , Reações Cruzadas , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Feminino , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
20.
PLoS One ; 7(11): e50166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226246

RESUMO

The human cytomegalovirus (HCMV) protein RL13 has recently been described to be present in all primary isolates but rapidly mutated in culture adapted viruses. Although these data suggest a crucial role for this gene product in HCMV primary infection, no function has so far been assigned to this protein. Working with RL13 expressed in isolation in transfected human epithelial cells, we demonstrated that recombinant RL13 from the clinical HCMV isolates TR and Merlin have selective human immunoglobulin (Ig)-binding properties towards IgG1 and IgG2 subtypes. An additional Fc binding protein, RL12, was also identified as an IgG1 and IgG2 binding protein but not further characterized. The glycoprotein RL13 trafficked to the plasma membrane where it bound and internalized exogenous IgG or its constant fragment (Fcγ). Analysis of RL13 ectodomain mutants suggested that the RL13 Ig-like domain is responsible for the Fc binding activity. Ligand-dependent internalization relied on a YxxL endocytic motif located in the C-terminal tail of RL13. Additionally, we showed that the tyrosine residue could be replaced by phenylalanine but not by alanine, indicating that the internalization signal was independent from phosphorylation events. In sum, RL13 binds human IgG and may contribute to HCMV immune evasion in the infected host, but this function does not readily explain the instability of the RL13 gene during viral propagation in cultured cells.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/virologia , Citomegalovirus/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Vírus Reordenados/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/imunologia , Citomegalovirus/imunologia , Humanos , Evasão da Resposta Imune , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Mimetismo Molecular , Dados de Sequência Molecular , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Vírus Reordenados/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA