RESUMO
The promise of 225Ac targeted alpha therapies has been on the horizon for the last two decades. TerraPower Isotopes are uniquely suited to produce clinically relevant quantities of 225Ac through the decay of 229Th. Herein, a rapid processing scheme to isolate radionuclidic and radioisotopically pure 225Ac in good yield (98%) produced from 229Th that contains significant quantities of 228Th activity is described. The characterization of each step of the process is presented along with the detailed characterization of the resulting 225Ac isotopic starting material that will support the cancer research and development efforts.
RESUMO
Discovery of reliable signatures for the empirical diagnosis of neurological diseases-both infectious and non-infectious-remains unrealized. One of the primary challenges encountered in such studies is the lack of a comprehensive database representative of a signature background that exists in healthy individuals, and against which an aberrant event can be assessed. For neurological insults and injuries, it is important to understand the normal profile in the neuronal (cerebrospinal fluid) and systemic fluids (e.g., blood). Here, we present the first comparative multi-omic human database of signatures derived from a population of 30 individuals (15 males, 15 females, 23-74 years) of serum and cerebrospinal fluid. In addition to empirical signatures, we also assigned common pathways between serum and CSF. Together, our findings provide a cohort against which aberrant signature profiles in individuals with neurological injuries/disease can be assessed-providing a pathway for comprehensive diagnostics and therapeutics discovery.
Assuntos
Doenças do Sistema Nervoso , Proteômica , Líquido Cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Masculino , Metabolômica , NeurôniosRESUMO
There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.
Assuntos
Exposição à Radiação , Humanos , Modelos Biológicos , Radiação Ionizante , PeleRESUMO
Developing chelators that strongly and selectively bind rare-earth elements (Sc, Y, La, and lanthanides) represents a longstanding fundamental challenge in inorganic chemistry. Solving these challenges is becoming more important because of increasing use of rare-earth elements in numerous technologies, ranging from paramagnets to luminescent materials. Within this context, we interrogated the complexation chemistry of the scandium(III) (Sc3+) trication with the hexadentate 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) chelator. This H3NOTA chelator is often regarded as an underperformer for complexing Sc3+. A common assumption is that metalation does not fully encapsulate Sc3+ within the NOTA3- macrocycle, leaving Sc3+ on the periphery of the chelate and susceptible to demetalation. Herein, we developed a synthetic approach that contradicted those assumptions. We confirmed that our procedure forced Sc3+ into the NOTA3- binding pocket by using single crystal X-ray diffraction to determine the Na[Sc(NOTA)(OOCCH3)] structure. Density functional theory (DFT) and 45Sc nuclear magnetic resonance (NMR) spectroscopy showed Sc3+ encapsulation was retained when the crystals were dissolved. Solution-phase and DFT studies revealed that [Sc(NOTA)(OOCCH3)]1- could accommodate an additional H2O capping ligand. Thermodynamic properties associated with the Sc-OOCCH3 and Sc-H2O capping ligand interactions demonstrated that these capping ligands occupied critical roles in stabilizing the [Sc(NOTA)] chelation complex.
Assuntos
Compostos Heterocíclicos com 1 Anel , Escândio , Quelantes/química , Compostos Heterocíclicos com 1 Anel/química , Ligantes , Escândio/químicaRESUMO
Traumatic brain injury (TBI) is not a single disease state but describes an array of conditions associated with insult or injury to the brain. While some individuals with TBI recover within a few days or months, others present with persistent symptoms that can cause disability, neuropsychological trauma, and even death. Understanding, diagnosing, and treating TBI is extremely complex for many reasons, including the variable biomechanics of head impact, differences in severity and location of injury, and individual patient characteristics. Because of these confounding factors, the development of reliable diagnostics and targeted treatments for brain injury remains elusive. We argue that the development of effective diagnostic and therapeutic strategies for TBI requires a deep understanding of human neurophysiology at the molecular level and that the framework of multiomics may provide some effective solutions for the diagnosis and treatment of this challenging condition. To this end, we present here a comprehensive review of TBI biomarker candidates from across the multiomic disciplines and compare them with known signatures associated with other neuropsychological conditions, including Alzheimer's disease and Parkinson's disease. We believe that this integrated view will facilitate a deeper understanding of the pathophysiology of TBI and its potential links to other neurological diseases.
RESUMO
Whispering gallery mode resonator (WGMR) microspheres yield highly structured optical spectra that are extremely sensitive to their environment and are of intense interest for use in a variety of sensing applications. Many efforts to leverage the unique sensitivities of WGMRs have relied on stringent experimental requirements to correlate specific spectral shifts/changes to an analyte/stimulus such as (1) precise positional knowledge, (2) reference spectra for each microsphere, and (3) high mechanical stability. Consequently, these factors can hinder adequate mixing or incorporation of analytes and can create challenges for remote sensing. This work describes a continuous flow technique for measuring whispering gallery mode (WGM) spectra of dye-doped microspheres suspended in solution and an accompanying analysis scheme that can extract the local refractive index without a priori knowledge of the microsphere size and position and without a reference spectrum. This measurement technique and analysis scheme was shown to accurately measure the refractive index of a range of alcohol and saline solutions down to a few thousandths of a refractive index unit (RIU). Additionally, a spectral clustering algorithm was applied to the fit results of two batches of microspheres suspended in water and was able to accurately assign spectra back to either batch of microspheres.
Assuntos
Refratometria , MicroesferasRESUMO
The positive impact of having access to well-defined starting materials for applied actinide technologies - and for technologies based on other elements - cannot be overstated. Of numerous relevant 5f-element starting materials, those in complexing aqueous media find widespread use. Consider acetic acid/acetate buffered solutions as an example. These solutions provide entry into diverse technologies, from small-scale production of actinide metal to preparing radiolabeled chelates for medical applications. However, like so many aqueous solutions that contain actinides and complexing agents, 5f-element speciation in acetic acid/acetate cocktails is poorly defined. Herein, we address this problem and characterize Ac3+ and Cm3+ speciation as a function of increasing acetic acid/acetate concentrations (0.1 to 15 M, pH = 5.5). Results obtained via X-ray absorption and optical spectroscopy show the aquo ion dominated in dilute acetic acid/acetate solutions (0.1 M). Increasing acetic acid/acetate concentrations to 15 M increased complexation and revealed divergent reactivity between early and late actinides. A neutral Ac(H2O)6 (1)(O2CMe)3 (1) compound was the major species in solution for the large Ac3+. In contrast, smaller Cm3+ preferred forming an anion. There were approximately four bound O2CMe1- ligands and one to two inner sphere H2O ligands. The conclusion that increasing acetic acid/acetate concentrations increased acetate complexation was corroborated by characterizing (NH4)2M(O2CMe)5 (M = Eu3+, Am3+ and Cm3+) using single crystal X-ray diffraction and optical spectroscopy (absorption, emission, excitation, and excited state lifetime measurements).
RESUMO
Actinium-225 (225Ac) is an excellent candidate for targeted radiotherapeutic applications for treating cancer, because of its 10-day half-life and emission of four high-energy α2+ particles. To harness and direct the energetic potential of actinium, strongly binding chelators that remain stable in vivo during biological targeting must be developed. Unfortunately, controlling chelation for actinium remains challenging. Actinium is the largest +3 cation on the periodic table and has a 6d05f0 electronic configuration, and its chemistry is relatively unexplored. Herein, we present theoretical work focused on improving the understanding of actinium bonding with macrocyclic chelating agents as a function of (1) macrocycle ring size, (2) the number and identity of metal binding functional groups, and (3) the length of the tether linking the metal binding functional group to the macrocyclic backbone. Actinium binding by these chelators is presented within the context of complexation with DOTA4-, the most relevant Ac3+ binding agent for contemporary radiopharmaceutical applications. The results enabled us to develop a new strategy for actinium chelator design. The approach is rooted in our identification that Ac3+-chelation chemistry is dominated by ionic bonding interactions and relies on (1) maximizing electrostatic interactions between the metal binding functional group and the Ac3+ cation and (2) minimizing electronic repulsion between negatively charged actinium binding functional groups. This insight will provide a foundation for future innovation in developing the next generation of multifunctional actinium chelators.
Assuntos
Actínio/química , Quelantes/síntese química , Desenho Assistido por Computador , Complexos de Coordenação/síntese química , Compostos Macrocíclicos/síntese química , Compostos Radiofarmacêuticos/síntese química , Quelantes/química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Compostos Macrocíclicos/química , Estrutura Molecular , Compostos Radiofarmacêuticos/química , Eletricidade EstáticaRESUMO
BACKGROUND: Yersinia pestis is a category A infective agent that causes bubonic, septicemic, and pneumonic plague. Notably, the acquisition of antimicrobial or multidrug resistance through natural or purposed means qualifies Y. pestis as a potential biothreat agent. Therefore, high-quality antibodies designed for accurate and sensitive Y. pestis diagnostics, and therapeutics potentiating or replacing traditional antibiotics are of utmost need for national security and public health preparedness. METHODS: Here, we describe a set of human monoclonal immunoglobulins (IgG1s) targeting Y. pestis fraction 1 (F1) antigen, previously derived from in vitro evolution of a phage-display library of single-chain antibodies (scFv). We extensively characterized these antibodies and their effect on bacterial and mammalian cells via: ELISA, flow cytometry, mass spectrometry, spectroscopy, and various metabolic assays. RESULTS: Two of our anti-F1 IgG (αF1Ig 2 and αF1Ig 8) stood out for high production yield, specificity, and stability. These two antibodies were additionally attractive in that they displayed picomolar affinity, did not compete when binding Y. pestis, and retained immunoreactivity upon chemical derivatization. Most importantly, these antibodies detected <1,000 Y. pestis cells in sandwich ELISA, did not harm respiratory epithelial cells, induced Y. pestis agglutination at low concentration (350 nM), and caused apparent reduction in cell growth when radiolabeled at a nonagglutinating concentration (34 nM). CONCLUSION: These antibodies are amenable to the development of accurate and sensitive diagnostics and immuno/radioimmunotherapeutics.
RESUMO
Increasing access to the short-lived α-emitting radionuclide astatine-211 (211At) has the potential to advance targeted α-therapeutic treatment of disease and to solve challenges facing the medical community. For example, there are numerous technical needs associated with advancing the use of 211At in targeted α-therapy, e.g., improving 211At chelates, developing more effective 211At targeting, and characterizing in vivo 211At behavior. There is an insufficient understanding of astatine chemistry to support these efforts. The chemistry of astatine is one of the least developed of all elements on the periodic table, owing to its limited supply and short half-life. Increasing access to 211At could help address these issues and advance understanding of 211At chemistry in general. We contribute here an extraction chromatographic processing method that simplifies 211At production in terms of purification. It utilizes the commercially available Pre-Filter resin to rapidly (<1.5 h) isolate 211At from irradiated bismuth targets (Bi decontamination factors ≥876â¯000), in reasonable yield (68-55%) and in a form that is compatible for subsequent in vivo study. We are excited about the potential of this procedure to address 211At supply and processing/purification problems.
RESUMO
Advances in targeted α-therapies have increased the interest in actinium (Ac), whose chemistry is poorly defined due to scarcity and radiological hazards. Challenges associated with characterizing Ac3+ chemistry are magnified by its 5f06d0 electronic configuration, which precludes the use of many spectroscopic methods amenable to small amounts of material and low concentrations (like EPR, UV-vis, fluorescence). In terms of nuclear spectroscopy, many actinium isotopes (225Ac and 227Ac) are equally "unfriendly" because the actinium α-, ß-, and γ-emissions are difficult to resolve from the actinium daughters. To address these issues, we developed a method for isolating an actinium isotope (228Ac) whose nuclear properties are well-suited for γ-spectroscopy. This four-step procedure isolates 228Ra from naturally occurring 232Th. The relatively long-lived 228Ra (t1/2 = 5.75(3) years) radioisotope subsequently decays to 228Ac. Because the 228Ac decay rate [t1/2 = 6.15(2) h] is fast, 228Ac rapidly regenerates after being harvested from the 228Ra parent. The resulting 228Ac generator provides frequent and long-term access (of many years) to the spectroscopically "friendly" 228Ac radionuclide. We have demonstrated that the 228Ac product can be routinely "milked" from this generator on a daily basis, in chemically pure form, with high specific activity and in excellent yield (â¼95%). Hence, in the same way that developing synthesis routes to new starting materials has advanced coordination chemistry for many metals by broadening access, this 228Ac generator has the potential to broaden actinium access for the inorganic community, facilitating the characterization of actinium chemical behavior.
RESUMO
Our lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing ß-galactosidase (ß-gal). We investigated two molecular architectures to create agents that detect ß-gal activity by modulating the coordination of water to GdIII . The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6-C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing ß-gal.
Assuntos
Imageamento por Ressonância Magnética/métodos , beta-Galactosidase/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Estrutura MolecularRESUMO
Radionuclides find widespread use in medical technologies for treating and diagnosing disease. Among successful and emerging radiotherapeutics, 119Sb has unique potential in targeted therapeutic applications for low-energy electron-emitting isotopes. Unfortunately, developing 119Sb-based drugs has been slow in comparison to other radionuclides, primarily due to limited accessibility. Herein is a production method that overcomes this challenge and expands the available time for large-scale distribution and use. Our approach exploits high flux and fluence from high-energy proton sources to produce longer lived 119mTe. This parent isotope slowly decays to 119Sb, which in turn provides access to 119Sb for longer time periods (in comparison to direct 119Sb production routes). We contribute the target design, irradiation conditions, and a rapid procedure for isolating the 119mTe/119Sb pair. To guide process development and to understand why the procedure was successful, we characterized the Te/Sb separation using Te and Sb K-edge X-ray absorption spectroscopy. The procedure provides low-volume aqueous solutions that have high 119mTe-and consequently 119Sb-specific activity in a chemically pure form. This procedure has been demonstrated at large-scale (production-sized, Ci quantities), and the product has potential to meet stringent Food and Drug Administration requirements for a 119mTe/119Sb active pharmaceutical ingredient.
RESUMO
A fundamental challenge in the design of bioresponsive (or bioactivated) GdIII-based magnetic resonance (MR) imaging probes is the considerable background signal present in the "preactivated" state that arises from outer-sphere relaxation processes. When sufficient concentrations of a bioresponsive agent are present (i.e., a detectable signal in the image), the inner- and outer-sphere contributions to r1 may be misinterpreted to conclude that the agent has been activated, when it has not. Of the several parameters that determine the observed MR signal of an agent, only the electron relaxation time ( T1e) impacts both the inner- and outer-sphere relaxation. Therefore, strategies to minimize this background signal must be developed to create a near zero-background (or truly "off" state) of the agent. Here, we demonstrate that intramolecular magnetic exchange coupling when GdIII is coupled to a paramagnetic transition metal provides a means to overcome the contribution of second- and outer-sphere contributions to the observed relaxivity. We have prepared a series of complexes with the general formula LMLn(µ-O2CCH3)(O2CCH3)2 (M = Co, Cu, Zn). Solid-state magnetic susceptibility measurements reveal significant magnetic coupling between GdIII and the transition metal ion. Nuclear magnetic relaxation dispersion (NMRD) analysis confirms that the observed differences in relaxivity are associated with the modulation of T1e at GdIII. These results clearly demonstrate that magnetic exchange coupling between GdIII and a transition metal ion can provide a significant decrease in T1e (and therefore the relaxivity of GdIII). This design strategy is being exploited to prepare new generations of preclinical bioresponsive MR imaging probes with near zero-background.
RESUMO
Misregulation of extracellular Ca2+ can indicate bone-related pathologies. New, noninvasive tools are required to image Ca2+ fluxes and fluorine magnetic resonance imaging (19F-MRI) is uniquely suited to this challenge. Here, we present three, highly fluorinated peptide amphiphiles that self-assemble into nanoribbons in buffered saline and demonstrate these nanostructures can be programmed to change 19F-NMR signal intensity as a function of Ca2+ concentration. We determined these nanostructures show significant reduction in 19F-NMR signal as nanoribbon width increases in response to Ca2+, corresponding to 19F-MR image intensity reduction. Thus, these peptide amphiphiles can be used to quantitatively image biologically relevant Ca2+ concentrations.
Assuntos
Cálcio/química , Flúor , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , PeptídeosRESUMO
PURPOSE: To demonstrate a new MR imaging approach that unambiguously identifies and quantitates contrast agents based on intrinsic agent properties such as r1 , r2 , r2*, and magnetic susceptibility. The approach is referred to as magnetic barcode imaging (MBI). METHODS: Targeted and bioresponsive contrast agents were imaged in agarose phantoms to generate T1 , T2 , T2*, and quantitative susceptibility maps. The parameter maps were processed by a machine learning algorithm that is trained to recognize the contrast agents based on these parameters. The output is a quantitative map of contrast agent concentration, identity, and functional state. RESULTS: MBI allowed the quantitative interpretation of intensities, removed confounding backgrounds, enabled contrast agent multiplexing, and unambiguously detected the activation and binding states of bioresponsive and targeted contrast agents. CONCLUSION: MBI has the potential to overcome significant limitations in the interpretation, quantitation, and multiplexing of contrast enhancement by MR imaging probes. Magn Reson Med 77:970-978, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Assuntos
Algoritmos , Meios de Contraste/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Técnicas de Sonda Molecular , Meios de Contraste/química , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond-gadolinium(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium(III) [Gd(III)]-nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd(III) compared to that of clinical Gd(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1- and T2-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities.
Assuntos
Gadolínio , Imagem Molecular , Nanodiamantes , Neoplasias Experimentais/diagnóstico por imagem , Animais , Meios de Contraste , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCIDRESUMO
A homologous series of [2]rotaxanes, in which cyclobis(paraquat-p-phenylene) (CBPQT(4+)) serves as the ring component, while the dumbbell components all contain single 4,4'-bipyridinium (BIPY(2+)) units centrally located in the midst of oligomethylene chains of varying lengths, have been synthesized by taking advantage of radical templation and copper-free azide-alkyne 1,3-dipolar cycloadditions in the formation of their stoppers. Cyclic voltammetry, UV/vis spectroscopy, and mass spectrometry reveal that the BIPY(â¢+) radical cations in this series of [2]rotaxanes are stabilized against oxidation, both electrochemically and by atmospheric oxygen. The enforced proximity between the BIPY(2+) units in the ring and dumbbell components gives rise to enhanced Coulombic repulsion, destabilizing the ground-state co-conformations of the fully oxidized forms of these [2]rotaxanes. The smallest [2]rotaxane, with only three methylene groups on each side of its dumbbell component, is found to exist under ambient conditions in a monoradical state, a situation which does not persist in acetonitrile solution, at least in the case of its longer analogues. (1)H NMR spectroscopy reveals that the activation energy barriers to the shuttling of the CBPQT(4+) rings over the BIPY(2+) units in the dumbbells increase linearly with increasing oligomethylene chain lengths across the series of [2]rotaxanes. These findings provide a new way of producing highly stabilized BIPY(â¢+) radical cations and open up more opportunities to use stable organic radicals as building blocks for the construction of paramagnetic materials and conductive molecular electronic devices.
RESUMO
A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced.