Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 16(6): e0253487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161386

RESUMO

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , COVID-19/terapia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , COVID-19/virologia , Quimiocinas/sangue , Quimiocinas/genética , Chlorocebus aethiops , Convalescença , Cricetinae , Citocinas/sangue , Citocinas/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Macaca mulatta , Masculino , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Carga Viral
2.
J Virol ; 91(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637753

RESUMO

A detailed understanding of the fine specificity of serotype-specific human antibodies is vital for the development and evaluation of new vaccines for pathogenic flaviviruses such as dengue virus (DENV) and Zika virus. In this study, we thoroughly characterize the structural footprint of an anti-idiotype antibody (E1) specific for a potent, fully human DENV serotype 1-specific antibody, termed HM14c10, derived from a recovered patient. The crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 provides the first detailed molecular comparison of an anti-idiotype paratope specific for a human antibody with its analogous epitope, a discontinuous quaternary structure located at the surface of the viral particle that spans adjacent envelope (E) proteins. This comparison reveals that the footprints left by E1 and E on HM14c10 largely overlap, explaining why the formation of binary complexes is mutually exclusive. Structural mimicry of the DENV E epitope by the E1 combining site is achieved via the formation of numerous interactions with heavy chain complementarity domain regions (CDRs) of HM14c10, while fewer interactions are observed with its light chain than for the E protein. We show that E1 can be utilized to detect HM14c10-like antibodies in sera from patients who recovered from DENV-1, infection suggesting that this is a public (common) idiotype. These data demonstrate the utility of employing an anti-idiotype antibody to monitor a patient's specific immune responses and suggest routes for the improvement of E "mimicry" by E1 by increasing its recognition of the Fab HM14c10 light chain CDRs.IMPORTANCE A chimeric yellow fever-dengue live-attenuated tetravalent vaccine is now being marketed. Dengue remains a significant public health problem, because protection conferred by this vaccine against the four circulating serotypes is uneven. Reliable tools must be developed to measure the immune responses of individuals exposed to DENV either via viral infection or through vaccination. Anti-idiotypic antibodies provide precision tools for analyzing the pharmacokinetics of antibodies in an immune response and also for measuring the amount of circulating anti-infective therapeutic antibodies. Here, we characterize how an anti-idiotypic antibody (E1) binds antibody HM14c10, which potently neutralizes DENV serotype 1. We report the crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 and provide the first detailed molecular comparison between the anti-idiotype surface and its analogous epitope located at the surface of the dengue virus particle.

3.
Int Immunol ; 26(12): 649-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135889

RESUMO

Phage display involves the expression of selected proteins on the surface of filamentous phage through fusion with phage coat protein, with the genetic sequence packaged within, linking phenotype to genotype selection. When combined with antibody libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and recovery of their corresponding coding sequence. Large non-immune and synthetic human libraries have been constructed as well as smaller immune libraries based on capturing a single individual's immune repertoire. This completely in vitro process allows for isolation of antibodies against poorly immunogenic targets as well as those that cannot be obtained by animal immunization, thus further expanding the utility of the approach. Phage antibody display represents the first developed methodology for high throughput screening for human therapeutic antibody candidates. Recently, other methods have been developed for generation of fully human therapeutic antibodies, such as single B-cell screening, next-generation genome sequencing and transgenic mice with human germline B-cell genes. While each of these have their particular advantages, phage display has remained a key methodology for human antibody discovery due its in vitro process. Here, we review the continuing role of this technique alongside other developing technologies for therapeutic antibody discovery.


Assuntos
Anticorpos Monoclonais , Técnicas de Visualização da Superfície Celular , Descoberta de Drogas , Biblioteca de Peptídeos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Autoantígenos/imunologia , Biotecnologia , Carboidratos/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipídeos/imunologia , Proteínas/imunologia , Proteínas/metabolismo
4.
PLoS One ; 8(5): e65231, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717696

RESUMO

Activating Fc gamma receptors (FcγRs) in hematopoietic cells serve to remove antibody-opsonized antigens, including dengue virus (DENV), from systemic circulation. While neutralizing antibody concentrations provide humoral immunity, cross-reactive or sub-neutralizing levels of antibody can result in antibody-dependent enhancement of DENV infection that increases overall viral burden. Recently, it has been suggested that the antibody levels needed for DENV neutralization differs when different FcγR is engaged. If this is true, the threshold titer used to infer immunity should be influenced by FcγR usage. Here, using cells that express both activating and inhibitory FcγRs, we show that the type of FcγR engaged during phagocytosis can influence the antibody concentration requirement for DENV neutralization. We demonstrate that phagocytosis through FcγRI requires significantly less antibody for complete DENV neutralization compared to FcγRIIA. Furthermore, when DENV is opsonized with sub-neutralizing levels of antibody, FcγRI-mediated phagocytosis resulted in significantly reduced DENV titers compared to FcγRIIA. However, while FcγRI may remove antibody-opsonized DENV more efficiently, this receptor is only preferentially engaged by clustering when neutralizing, but not sub-neutralizing antibody concentrations, were used. Collectively, our study demonstrates that activating FcγR usage may influence antibody titers needed for DENV neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Receptores de IgG/imunologia , Animais , Western Blotting , Linhagem Celular , Vírus da Dengue/crescimento & desenvolvimento , Citometria de Fluxo , Humanos , Testes de Neutralização , Fagocitose , RNA Interferente Pequeno/genética , Ensaio de Placa Viral
5.
Sci Transl Med ; 4(139): 139ra83, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22723463

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that affects 2.5 billion people worldwide. There are four dengue serotypes (DENV1 to DENV4), and infection with one elicits lifelong immunity to that serotype but offers only transient protection against the other serotypes. Identification of the protective determinants of the human antibody response to DENV is a vital requirement for the design and evaluation of future preventative therapies and treatments. Here, we describe the isolation of a neutralizing antibody from a DENV1-infected patient. The human antibody 14c10 (HM14c10) binds specifically to DENV1. HM14c10 neutralizes the virus principally by blocking virus attachment; at higher concentrations, a post-attachment step can also be inhibited. In vivo studies show that the HM14c10 antibody has antiviral activity at picomolar concentrations. A 7 Å resolution cryoelectron microscopy map of Fab fragments of HM14c10 in a complex with DENV1 shows targeting of a discontinuous epitope that spans the adjacent surface of envelope protein dimers. As found previously, a human antibody specific for the related West Nile virus binds to a similar quaternary structure, suggesting that this could be an immunodominant epitope. These findings provide a structural and molecular context for durable, serotype-specific immunity to DENV infection.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Antivirais/uso terapêutico , Vírus da Dengue/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Microscopia Crioeletrônica , Dengue/tratamento farmacológico , Vírus da Dengue/imunologia , Vírus da Dengue/ultraestrutura , Epitopos/imunologia , Humanos , Camundongos
6.
J Virol Methods ; 179(1): 97-103, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22040846

RESUMO

The replication of dengue virus (DENV) RNA requires at least two viral non-structural (NS) proteins, NS3 and NS5. To facilitate the study of the DENV replication complex, human monoclonal IgG that are specific for NS proteins have been generated and characterised. The anti-NS3 IgG, 3F8, binds a conserved epitope (aa526-531) in the NS3 helicase domain, and cross-reacts with NS3 from all four DENV serotypes and the related yellow fever virus. The anti-NS2B IgG, 3F10, binds aa49-66 of NS2B (CF18), which forms part of the 47 aa hydrophilic cofactor region required for NS3 protease activity. The specificity of the IgG for their respective non-structural proteins has been demonstrated by immunofluorescence of cells infected with DENV and Western blotting. 3F8 is able to co-immunoprecipitate NS3 and NS5 from BHK-21 cells infected with DENV2, and 3F10 is able to detect an interaction between recombinant NS2B(CF18)NS3 full-length protein and the NS5 RNA-dependent RNA polymerase (RdRp) domain in an ELISA-based binding assay. The assay is specific and highly reproducible, with a clear binding curve seen when RdRp is incubated with increasing amounts of full-length NS3, but not the NS3 protease domain. The NS3 helicase domain competes with NS3 full-length for NS5 RdRp binding, with a K(d.) of 2.5µM. Since NS3 and NS5 are required for DENV replication, this fascile assay could be used to screen for non-nucleoside, allosteric inhibitors that disrupt the interaction between the two proteins.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Vírus da Dengue/fisiologia , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Camundongos , Ligação Proteica , RNA Helicases/imunologia , RNA Helicases/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/imunologia
7.
J Immunol Methods ; 373(1-2): 79-88, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21856306

RESUMO

Rapid development of diagnostic immunoassays against novel emerging or genetically modified pathogens in an emergency situation is dependent on the timely isolation of specific antibodies. Non-immune antibody phage display libraries are an efficient in vitro method for selecting monoclonal antibodies and hence ideal in these circumstances. Such libraries can be constructed from a variety of sources e.g. B cell cDNA or synthetically generated, and use a variety of antibody formats, typically scFv or Fab. However, antibody source and format can impact on the quality of antibodies generated and hence the effectiveness of this methodology for the timely production of antibodies. We have carried out a comparative screening of two antibody libraries, a semi-synthetic scFv library and a human-derived Fab library against the protective antigen toxin component of Bacillus anthracis and the epsilon toxin of Clostridium botulinum. We have shown that while the synthetic library produced a diverse collection of specific scFv-phage, these contained a high frequency of unnatural amber stops and glycosylation sites which limited their conversion to IgG, and also a high number which lost specificity when expressed as IgG. In contrast, these limitations were overcome by the use of a natural human library. Antibodies from both libraries could be used to develop sandwich ELISA assays with similar sensitivity. However, the ease and speed with which full-length IgG could be generated from the human-derived Fab library makes screening this type of library the preferable method for rapid antibody generation for diagnostic assay development.


Assuntos
Anticorpos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Biblioteca de Peptídeos , Proteínas/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos/genética , Afinidade de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Toxinas Botulínicas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Proteínas/genética , Reprodutibilidade dos Testes , Anticorpos de Cadeia Única/genética
8.
Virol J ; 5: 130, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18957074

RESUMO

Identification of neutralizing antibodies with specificity away from the traditional mutation prone antigenic regions, against the conserved regions of hemagglutinin from H5N1 influenza virus has the potential to provide a therapeutic option which can be developed ahead of time in preparation for a possible pandemic due to H5N1 viruses. In this study, we used a combination of panning strategies against the hemagglutinin (HA) of several antigenic distinct H5N1 isolates to bias selection of Fab-phage from a naïve human library away from the antigenic regions of HA, toward the more conserved portions of the protein. All of the identified Fab clones which showed binding to multiple antigenically distinct HA were converted to fully human IgG, and tested for their ability to neutralize the uptake of H5N1-virus like particles (VLP) into MDCK cells. Five of the antibodies which showed binding to the relatively conserved HA2 subunit of HA, exhibited neutralization of H5N1-VLP uptake in a dose dependant manner. The inhibitory effects of these five antibodies were similar to those observed with a previously described neutralizing antibody specific for the 140s antigenic loop present within HA1 and highlight the exciting possibility that these antibodies may be efficacious against multiple H5N1 strains.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Hemaglutininas Virais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Animais , Linhagem Celular , Cães , Regulação Viral da Expressão Gênica , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Internalização do Vírus
9.
Virol J ; 5: 80, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18616831

RESUMO

The monoclonal antibody VN04-2 was previously shown to protect mice against lethal A/Vietnam/1203/04 H5N1 virus challenge when administered pre- and post-infection. In this study, we characterized the binding requirements of this antibody using direct binding to hemagglutinin and neutralization assays with H5N1 virus-like particles (H5N1-VLP) of eight recent H5N1 strains representing the major mutations within the 140s antigenic loop. Binding was clade independent and 3 mutations within this antigenic region are required before escape is possible, suggesting that apart from the H5N1 viruses circulating in Indonesia, VN04-2 may provide protection against H5N1 viruses from all other regions.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/imunologia , Mutação , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Epitopos/química , Epitopos/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Indonésia , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Camundongos , Testes de Neutralização , Vírion/imunologia
10.
Respir Res ; 7: 126, 2006 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17040574

RESUMO

BACKGROUND: Highly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic. METHODS: Neutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival. RESULTS: Two mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required. CONCLUSION: Prophylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Imunização Passiva/métodos , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/terapia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA