Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561975

RESUMO

The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the µ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-ß) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-ß signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TßRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-ß signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Caveolina 1/biossíntese , Colágeno/biossíntese , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Caveolina 1/genética , Colágeno/genética , Endocitose/genética , Glipicanas/genética , Interferência de RNA , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/fisiologia
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182770

RESUMO

Metastasis is the main cause of cancer-related deaths. Anoikis is a type of apoptosis caused by cell detachment, and cancer cells become anoikis resistant such that they survive during circulation and can successfully metastasize. Therefore, sensitization of cancer cells to anoikis could prevent metastasis. Here, by screening for anoikis sensitizer using natural compounds, we found that pygenic acid A (PA), a natural compound from Prunella vulgaris, not only induced apoptosis but also sensitized the metastatic triple-negative breast cancer cell lines, MDA-MB-231 cells (human) and 4T1 cells (mouse), to anoikis. Apoptosis protein array and immunoblotting analysis revealed that PA downregulated the pro-survival proteins, including cIAP1, cIAP2, and survivin, leading to cell death of both attached and suspended cells. Interestingly, PA decreased the levels of proteins associated with anoikis resistance, including p21, cyclin D1, p-STAT3, and HO-1. Ectopic expression of active STAT3 attenuated PA-induced anoikis sensitivity. Although PA activated ER stress and autophagy, as determined by increases in the levels of characteristic markers, such as IRE1α, p-elF2α, LC3B I, and LC3B II, PA treatment resulted in p62 accumulation, which could be due to PA-induced defects in autophagy flux. PA also decreased metastatic characteristics, such as cell invasion, migration, wound closure, and 3D growth. Finally, lung metastasis of luciferase-labeled 4T1 cells decreased following PA treatment in a syngeneic mouse model when compared with the control. These data suggest that PA sensitizes metastatic breast cancer cells to anoikis via multiple pathways, such as inhibition of pro-survival pathways and activation of ER stress and autophagy, leading to the inhibition of metastasis. These findings suggest that sensitization to anoikis by PA could be used as a new therapeutic strategy to control the metastasis of breast cancer.


Assuntos
Anoikis/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Triterpenos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Medicina Tradicional do Leste Asiático , Camundongos , Camundongos Endogâmicos BALB C , Plantas Medicinais , Prunella , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
Arch Biochem Biophys ; 689: 108437, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526201

RESUMO

Skin aging is influenced by several genetic, physiological, and environmental factors. In particular, ultraviolet (UV) exposure is an important factor involved in inducing skin photoaging. Autophagy controlling homeostatic balance between the synthesis, degradation, and recycling of cellular organelles and proteins plays important regulatory roles in several biological processes, including aging. The opioid neuropeptide α-neoendorphin (named NEP) is an endogenous decapeptide (N-YGGFLRKYPK-C) that activates the kappa opioid receptor and exhibits certain anti-aging and anti-wrinkling effects on skin cells; however, its action mechanism has not yet been elucidated. Therefore, the aim of this study was to determine the effects of NEP on anti-skin aging and autophagy activation in human dermal fibroblast cells. Western blot results showed that NEP down-regulates the production of phospho-mammalian target of rapamycin (p-mTOR), whereas increases the expression of key autophagy-related molecules such as Beclin-1, Atg5-Atg12, and LC3-II. The immunocytochemical analysis performed with anti-LC3-II antibody also showed that the autophagic indicators, autophagosomes are formed by NEP. These results suggest that NEP can activate cellular autophagy through mTOR-Beclin-1-mediated signaling pathway. It was also revealed by CM-H2DCF-DA assay and Western blottings that NEP can reduce the production of ultraviolet B (UVB)-induced reactive oxygen species (ROS) like with N-acetylcysteine (NAC), resulting in decreasing the expression levels of skin aging-related proteins, such as phospho-ERK (p-ERK), phospho-p38 (p-p38), and phospho-JNK (p-JNK). Furthermore, NEP could increase the type I procollagen production, while decreasing MMP-1, MMP-2, and MMP-9 activities. Taken together, the results demonstrate that NEP can reduce UVB-induced photoaging by activating autophagy.


Assuntos
Autofagia , Endorfinas/metabolismo , Precursores de Proteínas/metabolismo , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Derme/citologia , Derme/metabolismo , Derme/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Pró-Colágeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA