Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 9(5): 3005-12, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19452962

RESUMO

The ability to tune the magnetic properties of magnetic nanoparticles by manipulating the composition or surface properties of the nanoparticles is important for exploiting the application of the nanomaterials. This report describes preliminary findings of an investigation of the viability of synthesizing MnZn ferrite and core @ shell MnZn ferrite @ Au nanoparticles as potentially magnetization-tunable nanomaterials. The synthesis of the core-shell magnetic nanoparticles involved a simple combination of seed formation of the MnZn ferrite magnetic nanoparticles and surface coating of the seeds with gold shells. Water-soluble MnZn ferrite nanoparticles of 20-40 nm diameters and MnZn ferrite @ Au nanoparticles of 30-60 nm have been obtained. The MnZn ferrite @ Au nanoparticles have been demonstrated to be viable in magnetic separation of nanoparticles via interparticle antibody-specific binding reactivity between antibodies on the gold shells of the core-shell magnetic particles and proteins on gold nanoparticles. These findings have significant implications to the design of the core @ shell magnetic nanomaterials with core composition tuned magnetization for bioassay application.

2.
Anal Chem ; 81(2): 689-98, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19072589

RESUMO

The ability to regulate how molecular chirality of enantiomeric amino acids operates in biological systems constitutes the basis of drug design for specific targeting. We report herein a nanoparticle-based strategy to regulate interparticle chiral recognition of enantiomers using enantiomeric cysteines (l and d) and gold nanoparticles as a model system. A key element of this strategy is the creation of a nanoscale environment either favoring or not favoring the preferential configuration of the pairwise zwitterionic dimerization of the enantiomeric cysteines adsorbed on gold nanoparticles as a footprint for interparticle chiral recognition. This recognition leads to interparticle assembly of the nanoparticles which is determined by the change in the nanoparticle surface plasmonic resonance. While the surface density and functionality of cysteines on gold nanoparticles are independent of chirality, the interparticle chiral recognition is evidenced by the sharp contrast between the interparticle homochiral and heterochiral assembly rates based on a first-order kinetic model. The structural properties for the homochiral and heterochiral assemblies of nanoparticles depend on the particle size, the cysteine chirality, and other interparticle binding conditions. The structural and thermodynamic differences between the homochiral and heterochiral interactions for the interparticle assemblies of nanoparticles were not only substantiated by spectroscopic characterizations of the adsorbed cysteine species but also supported by structures and enthalpies obtained from preliminary density functional theory calculations. The experimental-theoretical correlation between the interparticle reactivity and the enantiomeric ratio reveals that the chiral recognition is tunable by the nanoscale environment, which is a key feature of the nanoparticle-regulation strategy for the interparticle chiral recognition.


Assuntos
Cisteína/química , Ouro/química , Nanopartículas Metálicas/química , Cisteína/análise , Cinética , Modelos Químicos , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Estereoisomerismo
3.
Anal Chem ; 80(15): 6038-44, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18613651

RESUMO

The ability to manipulate and intervene in the processes of assembly and disassembly of DNAs and nanoparticles is important for the exploitation of nanoparticles in medical diagnostics and drug delivery. This report describes the results of an investigation of a strategy to intervene in the assembly and disassembly processes of DNAs and gold nanoparticles based on two approaches. The first approach explores the viability of molecular intervention to the assembly-disassembly-reassembly process. The temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles were studied as a model system to illustrate this approach. The introduction of a molecular recognition probe leads to intervention in the assembly-disassembly process depending on its specific biorecognition. This process was detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. The second approach involves the disassembly of the DNA-linked assembly of nanoparticles using restriction enzymes (e.g., MspI). The presence of the double stranded DNAs in the nanoparticle assembly was also substantiated by a Southern blot. Implications of the results to exploration of the molecular intervention for fine-tuning interfacial reactivities in DNA-based bioassays are also discussed.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Enzimas de Restrição do DNA , Ouro , Oligonucleotídeos , Temperatura
4.
Langmuir ; 24(16): 8857-63, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18642936

RESUMO

The understanding of the detailed molecular interactions between (GSH) glutathione molecules in the assembly of metal nanoparticles is important for the exploitation of the biological reactivity. We report herein results of an investigation of the assembly of gold nanoparticles mediated by glutathione and the disassembly under controlled conditions. The interparticle interactions and reactivities were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method and the hydrodynamic sizes of the nanoparticle assemblies using the dynamic light scattering technique. The interparticle reactivity of glutathiones adsorbed on gold nanoparticles depends on the particle sizes and the ionic strength of the solution. Larger-sized particles were found to exhibit a higher degree of interparticle assembly than smaller-sized particles. The assembly-disassembly reversibility is shown to be highly dependent on pH and additives in the solution. The interactions of the negatively charged citrates surrounding the GSH monolayer on the particle surface were believed to produce more effective interparticle spatial and electrostatic isolation than the case of OH (-) groups surrounding the GSH monolayer. The results have provided new insights into the hydrogen-bonding character of the interparticle molecular interaction of glutathiones bound on gold nanoparticles. The fact that the interparticle hydrogen-bonding interactions in the assembly and disassembly processes can be finely tuned by pH and chemical means has implications to the exploitation of the glutathione-nanoparticle system in biological detection and biosensors.


Assuntos
Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Citratos/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula , Espectrofotometria
5.
Nanotechnology ; 19(30): 305102, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828754

RESUMO

The ability to create bio-functional nanoprobes for the detection of biological reactivity is important for developing bioassay and diagnostic methods. This paper describes the findings of an investigation of the surface functionalization of gold (Au) and magnetic nanoparticles coated with gold shells (M/Au) by proteins and spectroscopic labels for the creation of nanoprobes for use in surface enhanced Raman scattering (SERS) assays. Highly monodispersed Au nanoparticles and M/Au nanoparticles with two types of magnetic nanoparticle cores (Fe(2)O(3) and MnZn ferrite) were studied as model systems for the bio-functionalization and Raman labeling. Comparison of the SERS intensities obtained with different particle sizes (30-100 nm) and samples in solution versus on solid substrates have revealed important information about the manipulation of the SERS signals. In contrast to the salt-induced uncontrollable and irreversible aggregation of nanoparticles, the ability to use a centrifugation method to control the formation of stable small clustering sizes of nanoparticles was shown to enhance SERS intensities for samples in solution as compared with samples on solid substrates. A simple method for labeling protein-capped Au nanoparticles with Raman-active molecules was also described. The functionalized Au and M/Au nanoparticles are shown to exhibit the desired functional properties for the detection of SERS signals in the magnetically separated reaction products. These results are discussed in terms of the interparticle distance dependence of 'hot-spot' SERS sites and the delineation of the parameters for controlling the core-shell reactivity of the magnetic functional nanocomposite materials in bio-separation and spectroscopic probing.

6.
Langmuir ; 23(21): 10715-24, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17803330

RESUMO

The understanding of the interparticle interactions of nanocomposite structures assembled using molecularly capped metal nanoparticles and macromolecular mediators as building blocks is essential for exploring the fine-tunable interparticle spatial and macromolecular properties. This paper reports the results of an investigation of the chemically tunable multifunctional interactions between fullerenes (1-(4-methyl)-piperazinyl fullerene, MPF) and gold nanoparticles. The interparticle spatial properties are defined by the macromolecular and multifunctional electrostatic interactions between the negatively charged nanoparticles and the positively charged fullerenes. In addition to characterization of the morphological properties, the surface plasmon resonance band, dynamic light scattering, and surface-enhanced Raman scattering (SERS) properties of the MPF-mediated assembly and disassembly processes have been determined. The change of the optical properties depends on the pH and electrolyte concentrations. The detection of the Raman-active vibration modes (Ag(2) and Hg(8)) of C60 and the determination of their particle size dependence have demonstrated that the adsorption of MPF on the nanoparticle surface in the MPF-Au nm assembly is responsible for the SERS effect. These findings provide new insights into the delineation between the interparticle interactions and the nanostructural properties for potential applications of the nanocomposite materials in spectroscopic and optical sensors and in controlled releases.

8.
Langmuir ; 23(2): 826-33, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209640

RESUMO

This paper reports the findings of an investigation of the reactivity and assembly of gold nanoparticles mediated by homocysteine (Hcys), a thiol-containing amino acid found in plasma. The aim is to gain insight into the interparticle interaction and reactivity, which has potential application for the detection of thiol-containing amino acids. By monitoring the evolution of the surface plasmon resonance absorption and the dynamic light scattering of gold nanoparticles in the presence of Hcys, the assembly was shown to be dependent on the nature and concentration of the electrolytes, reflecting an effective screening of the diffuse layer around the initial citrate-capped nanoparticles that decreases the barrier to the Hcys adsorption onto the surface, and around the subsequent Hcys-capped nanoparticles that facilitate the zwitterion-type electrostatic interactions between amino acid groups of Hcys bound to different nanoparticles. A key element of the finding is that the interparticle zwitterion interaction of the Hcys-Au system is much stronger than the expectation for a simple Hcys or Au solution, a new phenomenon originating from the unique nanoscale interparticle interaction. The strength and reversibility of the interparticle zwitterion-type electrostatic interactions between amino acid groups are evidenced by the slow disassembly upon increasing pH at ambient temperatures and its acceleration at elevated temperature. These findings provide new insight into the precise control of interfacial interactions and reactivities between amino acids anchored to nanoparticles and have broad implications in the development of colorimetric nanoprobes for amino acids.


Assuntos
Físico-Química/métodos , Ouro/química , Homocisteína/química , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Cinética , Luz , Microscopia Eletrônica de Transmissão , Conformação Molecular , Nanotecnologia/métodos , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Temperatura , Fatores de Tempo
9.
J Phys Chem B ; 110(13): 6673-82, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570972

RESUMO

This paper describes the results of an investigation of the interparticle interactions and reactivities in the assembly of gold nanoparticles mediated by cyanine dyes. The combination of the positively charged indolenine cyanine dyes and the negatively charged gold nanoparticles is shown to form a J-aggregate bridged assembly of nanoparticles, in addition to hydrophobic interparticle and electrostatic dye-particle interactions. Such interparticle interactions and reactivities are studied by probing the absorption of J-aggregates and fluorescence from the dyes and the surface plasmon resonance absorption from the nanoparticles. The J-aggregation of the dyes adsorbed on the nanoparticles is shown to play an important role in the assembly of nanoparticles. The spectral evolution of the J-band of the dyes and the surface plasmon resonance band of the nanoparticles was found to be sensitive to the nature of the charge and the structure of the dyes. The fluorescence quenching for the dyes was shown to be quantitatively related to the surface coverage of the dyes on the nanocrystal surfaces. These findings have provided important information for assessing a two-step process involving a rapid adsorption of the dyes on the nanoparticles and a subsequent assembly of the nanoparticles involving a combination of interparticle J-aggregation and hydrophobic interactions of the adsorbed dyes. The results are discussed in terms of the structural effects of the dyes, and the interparticle molecular interactions and reactivities, which provide important physical and chemical insights into the design of dye-nanoparticle structured functional nanomaterials.


Assuntos
Carbocianinas/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Espectrofotometria , Eletricidade Estática
10.
J Am Chem Soc ; 127(5): 1519-29, 2005 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-15686385

RESUMO

The ability to construct size- and shape-controllable architectures using nanoparticles as building blocks is essential for the exploration of nanoparticle-structured properties. This paper reports findings of an investigation of a mediator-template strategy for the size-controllable assembly of nanoparticles. This strategy explores multidentate thioether ligands as molecular mediators and tetraalkylammonium-capped gold nanoparticles (5 nm) as templates toward the preparation of size-controllable and monodispersed spherical assemblies ( approximately 20-300-nm diameters). The combination of the mediation force of the multidentate thioether and the hydrophobic force of the tetraalkylammonium template establishes the interparticle linkage and stability. The morphological properties of the spherical assemblies have been characterized using TEM, AFM, and SAXS techniques. The finding of the soft-hard nature of the nanoparticle assemblies and their interactions with contacting substrates could form the basis of a new strategy for manipulating nanoscale linkages between nanoparticle assemblies, soldering nanoelectronics, and constructing nanosensor devices. The intriguing light scattering and optical absorption properties in response to assembly, disassembly, sizing, and interparticle spacing parameters have been characterized by dynamic light scattering and spectrophotometric measurements. The discovery of the controlled disassembly into individual nanoparticles and the size regulation by a third capping component could form the basis for applications in controlled drug delivery. The fundamental basis for the mediator-template strategy as a versatile assembly technique is further discussed in terms of experimental and theoretical correlations of the morphological and optical properties.

11.
J Am Chem Soc ; 125(33): 9906-7, 2003 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12914437

RESUMO

The ability to control the size and shape of nanoparticle assemblies is essential for the ultimate applications in sensors, catalysis, medical diagnostics, information storage, and quantum computation. This report demonstrates a novel mediator-template strategy toward this ability by exploring molecular driving forces exerted by a tridentate thioether as a mediator and tetraoctylammonium bromide as a templating agent. A combination of the ligand mediation, the surfactant templating, and their relative concentrations served as the driving forces. This combination leads to unprecedented spherical assemblies of gold nanoparticles in controllable sizes via manipulation of the relative concentrations of mediating and templating components.


Assuntos
Ouro/química , Nanotecnologia/métodos , Compostos de Organossilício/química , Sulfetos/química , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA