Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Appl Mater Interfaces ; 16(22): 29235-29247, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38769743

RESUMO

Expanding the functions and applications of DNA by integrating noncanonical bases and structures into biopolymers is a continuous scientific effort. An adenine-rich strand (A-strand) is introduced as functional scaffold revealing, in the presence of the low-molecular-weight cofactor cyanuric acid (CA, pKa 6.9), supramolecular hydrogel-forming efficacies demonstrating multiple pH-responsiveness. At pH 1.2, the A-strand transforms into a parallel A-motif duplex hydrogel cross-linked by AH+-H+A units due to the protonation of adenine (pKa 3.5). At pH 5.2, and in the presence of coadded CA, a helicene-like configuration is formed between adenine and protonated CA, generating a parallel A-CA triplex cross-linked hydrogel. At pH 8.0, the hydrogel undergoes transition into a liquid state by deprotonation of CA cofactor units and disassembly of A-CA triplex into its constituent components. Density functional theory calculations and molecular dynamics simulations, supporting the structural reconfigurations of A-strand in the presence of CA, are performed. The sequential pH-stimulated hydrogel states are rheometrically characterized. The hydrogel framework is loaded with fluorescein-labeled insulin, and the pH-stimulated release of insulin from the hydrogel across the pH barriers present in the gastrointestinal tract is demonstrated. The results provide principles for future application of the hydrogel for oral insulin administration for diabetes.


Assuntos
Adenina , DNA , Hidrogéis , Triazinas , Hidrogéis/química , Concentração de Íons de Hidrogênio , DNA/química , Adenina/química , Triazinas/química , Simulação de Dinâmica Molecular , Insulina/química
2.
J Am Chem Soc ; 146(23): 16112-16118, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38803151

RESUMO

Thermosets, characterized by their permanent cross-linked networks, present significant challenges in recyclability and brittleness. In this work, we explore a polarized Knoevenagel C═C metathesis reaction for the development of rigid yet tough and malleable thermosets. Initial investigation on small molecule model reactions reveals the feasibility of conducting the base-catalyzed C═C metathesis reaction in a solvent-free environment. Subsequently, thermosetting poly(α-cyanocinnamate)s (PCCs) were synthesized via Knoevenagel condensation between a triarm cyanoacetate star and a dialdehyde. The thermal and mechanical properties of the developed PCCs can be easily modulated by altering the structure of the dialdehyde. Remarkably, the introduction of ether groups into the PCC leads to a combination of high rigidity and toughness with Young's modulus of ∼1590 MPa, an elongation at break of ∼79%, and a toughness reaching ∼30 MJ m3. These values are competitive to traditional thermosets, in Young's modulus but far exceed them in ductility and toughness. Moreover, the C═C metathesis facilitates stress relaxation within the bulk polymer networks, thus rendering PCCs excellent malleability and reprocessability. This work overcomes the traditional limitations of thermosets, introducing groundbreaking insights for the design of rigid yet tough and malleable thermosets, and contributing significantly to the sustainability of materials.

3.
J Am Chem Soc ; 146(14): 9920-9927, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557104

RESUMO

Plastic recycling is critical for waste management and achieving a circular economy, but it entails difficult trade-offs between performance and recyclability. Here, we report a thermoset, poly(α-cyanocinnamate) (PCC), synthesized using Knoevenagel condensation between terephthalaldehyde (TPA) and a triarm cyanoacetate star, that tackles this difficulty by harnessing its intrinsically conjugated and dynamic chemical characteristics. PCCs exhibit extraordinary thermal and mechanical properties with a typical Tg of ∼178 °C, Young's modulus of 3.8 GPa, and tensile strength of 102 MPa, along with remarkable flexibility and dimensional and chemical stabilities. Furthermore, end-of-life PCCs can be selectively degraded and partially recycled back into one starting monomer TPA for a new production cycle or reprocessed through dynamic exchange aided by cyanoacetate chain-ends. This study lays the scientific groundwork for the design of robust and recyclable thermosets, with transformative potential in plastic engineering.

4.
ACS Appl Mater Interfaces ; 16(12): 15394-15404, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489480

RESUMO

External stimuli-responsive DNA hydrogels present interesting platforms for drug loading and triggered release. Typically, drug molecules are encapsulated within three-dimensionally hybridized DNA networks. However, the utilization of drug molecules as cofactors to facilitate the directed assembly of DNA strands into hydrogel frameworks and their subsequent controlled release remains to be explored. Herein, we introduce the guided assembly of oligo-adenine (A-strand) into an acidic pH-responsive DNA hydrogel using an anticancer drug, coralyne (COR), as a low-molecular-weight cofactor. At pH 7, COR orchestrates the assembly of A-strand into an antiparallel duplex configuration cross-linked by A-COR-A units at a stoichiometric ratio of one COR cofactor per four adenine bases, resulting in a DNA hydrogel characterized by A-COR-A duplex bridges. At pH 4-5, the instability of A-COR-A units results in the disintegration of the duplex into its constituent components, leading to the release of COR and simultaneous dissociation of the DNA hydrogel matrix. This study introduces a method by which drug molecules, exemplified here by COR, facilitate the direct formation of a supramolecular cofactor-DNA complex, subsequently leading to the creation of a stimuli-responsive DNA hydrogel. This approach may inspire future investigations into DNA hydrogels tailored for controlled drug encapsulation and release applications.


Assuntos
Adenina , Alcaloides de Berberina , Hidrogéis , Hidrogéis/química , DNA/química , Concentração de Íons de Hidrogênio
5.
Angew Chem Int Ed Engl ; 63(20): e202400955, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489506

RESUMO

Vitrimers represent an emerging class of polymeric materials that combine the desirable characteristics of both thermoplastics and thermosets achieved through the design of dynamic covalent bonds within the polymer networks. However, these materials are prone to creep due to the inherent instability of dynamic covalent bonds. Consequently, there are pressing demands for the development of robust and stable dynamic covalent chemistries. Here, we report a catalyst-free α-acetyl cinnamate/acetoacetate (α-AC/A) exchange reaction to develop vitrimers with remarkable creep resistance. Small-molecule model studies revealed that the α-AC/A exchange occurred at temperatures above 140 °C in bulk, whereas at 120 °C, this reaction was absent. For demonstration in the case of polymers, copolymers derived from common vinyl monomers were crosslinked with terephthalaldehyde to produce α-AC/A vitrimers with tunable thermal and mechanical performance. All resulting α-AC/A vitrimers exhibited high stability, especially in terms of creep resistance at 120 °C, while retaining commendable reprocessability when subjected to high temperatures. This work showcases the α-AC/A exchange reaction as a novel and robust dynamic covalent chemistry capable of imparting both reprocessability and high stability to cross-linked networks.

6.
Chem Sci ; 15(3): 1061-1067, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239702

RESUMO

Converting polystyrene into value-added oxygenated aromatic compounds is an attractive end-of-life upcycling strategy. However, identification of appropriate catalysts often involves laborious and time-consuming empirical screening. Herein, after demonstrating the feasibility of using acridinium salts for upcycling polystyrene into benzoic acid by photoredox catalysis for the first time, we applied low-cost descriptor-based combinatorial in silico screening to predict the photocatalytic performance of a family of potential candidates. Through this approach, we identified a non-intuitive fluorinated acridinium catalyst that outperforms other candidates for converting polystyrene to benzoic acid in useful yields at low catalyst loadings (≤5 mol%). In addition, this catalyst also proved effective with real-life polystyrene waste containing dyes and additives. Our study underscores the potential of computer-aided catalyst design for valorizing polymeric waste into essential chemical feedstock for a more sustainable future.

7.
Chemistry ; 30(2): e202302775, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792284

RESUMO

The anion recognition and electrochemical anion-sensing properties of halogen-bonding (XB) tripodal zinc(II) receptors strategically designed and constructed for tetrahedral anion guest binding are described. The XB tris(iodotriazole)-containing hosts exhibit high affinities and selectivities for inorganic phosphate over other more basic, mono-charged oxoanions such as acetate and the halides in a competitive CD3 CN/D2 O (9 : 1 v/v) aqueous solvent mixture. 1 H NMR anion binding and electrochemical voltammetric anion sensing studies with redox-active ferrocene functionalised metallo-tripodal receptor analogues, reveal each of the XB tripods as superior anion complexants when compared to their tris(prototriazole)-containing, hydrogen bonding (HB) counterparts, not only exemplifying the halogen bond as a strong alternative interaction to the traditional hydrogen bond for molecular recognition but also providing rare evidence of the ability of XB receptors to preferentially bind the "harder" phosphate oxoanion over the "softer" and less hydrated halides in aqueous containing media.

8.
ACS Biomater Sci Eng ; 9(10): 5724-5736, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729089

RESUMO

In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.


Assuntos
Cafeína , Ibuprofeno , Quimioterapia Combinada , Hansenostáticos
9.
Biomater Sci ; 11(8): 2661-2677, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36810436

RESUMO

Metal organic frameworks (MOFs) are incredibly versatile three-dimensional porous materials with a wide range of applications that arise from their well-defined coordination structures, high surface areas and porosities, as well as ease of structural tunability due to diverse compositions achievable. In recent years, following advances in synthetic strategies, development of water-stable MOFs and surface functionalisation techniques, these porous materials have found increasing biomedical applications. In particular, the combination of MOFs with polymeric hydrogels creates a class of new composite materials that marries the high water content, tissue mimicry and biocompatibility of hydrogels with the inherent structural tunability of MOFs in various biomedical contexts. Additionally, the MOF-hydrogel composites can transcend each individual component such as by providing added stimuli-responsiveness, enhancing mechanical properties and improving the release profile of loaded drugs. In this review, we discuss the recent key advances in the design and applications of MOF-hydrogel composite materials. Following a summary of their synthetic methodologies and characterisation, we discuss the state-of-the-art in MOF-hydrogels for biomedical use - cases including drug delivery, sensing, wound treatment and biocatalysis. Through these examples, we aim to demonstrate the immense potential of MOF-hydrogel composites for biomedical applications, whilst inspiring further innovations in this exciting field.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Hidrogéis/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Porosidade
10.
Biomater Res ; 26(1): 70, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461130

RESUMO

BACKGROUND: Hydrogels show great potential to be used for intraocular applications due to their high-water content and similarity to the native vitreous. Injectable thermosensitive hydrogels through a small-bore needle can be used as a delivery system for drugs or a tamponading substitute to treat posterior eye diseases with clear clinical potential. However, none of the currently available thermosensitive hydrogels can provide intraocular support for up to 3 months or more. METHOD: In this study, an injectable polytetrahydrofuran (PTHF)-based thermosensitive hydrogel was synthesized by polyurethane reaction. We examined the injectability, rheological properties, microstructure, cytotoxicity, and in vivo compatibility and stability of the hydrogels in rabbit eyes. RESULTS: We found that the PTHF block type and PTHF component ratio could modulate thermogelation properties of the polyurethane polymers. The PTHF-based hydrogel implants retained normal retinal structure and function. Incorporating bioinert PTHF generated highly biocompatible and more stable thermogels in the vitreous cavity, with gel networks and the presence of polymer still observed after 3 months when other thermogels would have been completely cleared. Moreover, despite lacking hydrolytically cleavable linkages, the polymers could be most naturally removed from the native vitreous by bio-erosion without additional surgical interventions. CONCLUSION: Our findings suggest the potential of incorporating hydrophobic bioinert blocks to enhance the in vivo stability of supramolecularly associated hydrogels for long-term intraocular applications.

11.
Chem Asian J ; 17(21): e202200784, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36136058

RESUMO

The structural battery is a multifunctional energy storage device that aims to address the weight and volume efficiency issues that conventional batteries face, especially in electric transportation. By combining the functions of mechanical load bearing and energy storage, structural batteries can reduce the reliance on, or even eventually replace the main power source in an electric vehicle or a drone. However, one of the key challenges to be addressed before achieving multifunctionality in structural batteries would be the design of a suitable multifunctional structural battery electrolyte. The structural battery electrolyte is the constituent that provides mechanical integrity under flexural loads or impact and hence determines the electrochemical and much of the mechanical performance of a structural battery device. This concept paper aims to cover the key considerations and challenges facing the design of structural battery electrolytes. In addition, the main approaches to surmount these challenges are highlighted, keeping design aspects like sustainability and recyclability in view.

12.
Chem Commun (Camb) ; 58(81): 11402-11405, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129049

RESUMO

Adipic acid, an industrially-important chemical that can be sustainably derived from biomass and post-consumer nylon, is traditionally overlooked as a linker for MOFs. Herein, we report the first direct one-pot method for synthesising UiO-66 MOFs with an unprecedented 69 mol% adipate content, as well as the feasibility of these materials for MOF defect engineering by rapid and selective adipate thermolysis.


Assuntos
Estruturas Metalorgânicas , Adipatos , Nylons , Ácidos Ftálicos
13.
Biomacromolecules ; 23(9): 3698-3712, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35998618

RESUMO

Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.


Assuntos
Hidrogéis , Fenômenos Mecânicos , Animais , Fadiga , Hidrogéis/farmacologia , Micelas , Polímeros , Suínos
14.
Chem Asian J ; 17(21): e202200621, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35945646

RESUMO

Thermogels, a class of hydrogels which show spontaneous sol-gel phase transition when warmed, are an important class of soft biomaterials. To date, however, most amphiphilic polymers that are able to form thermogels in aqueous solution are uncharged, and the influence of ionisable groups on thermogelation are largely unknown. Herein, we report the first example of a polyanionic amphiphilic multi-block copolymer, containing multiple pendant carboxylate groups, that can form transparent thermogels spontaneously when warmed up to physiological temperature. We demonstrate that introducing negative charges onto thermogelling polymers could significantly alter the properties of the micelles and thermogels formed. Furthermore, the polymer's polyanionic character provides new options for modulating the gel rheological properties, such as stiffness and gelation temperatures, through electrostatic interactions with different cations. We also demonstrated that the polyanionic thermogel allowed slower sustained release of a cationic model drug compound compared to an anionic one over 2 weeks. The findings from our study demonstrate exciting new possibilities for advanced biomedical applications using charged polyelectrolyte thermogel materials.


Assuntos
Hidrogéis , Tartaratos , Temperatura , Polieletrólitos , Polímeros
15.
Nat Commun ; 13(1): 2796, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589753

RESUMO

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Assuntos
Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Animais , Linhagem Celular , Movimento Celular , Cicatriz/metabolismo , Transição Epitelial-Mesenquimal , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polímeros/metabolismo , Coelhos , Epitélio Pigmentado da Retina/metabolismo
16.
Front Bioeng Biotechnol ; 10: 864372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433644

RESUMO

Temperature-responsive hydrogels, or thermogels, are a unique class of biomaterials that show facile and spontaneous transition from solution to gel when warmed. Their high biocompatibility, and ease of formulation with both small molecule drugs and biologics have made these materials prime candidates as injectable gel depots for sustained local drug delivery. At present, controlling the kinetics and profile of drug release from thermogels is achieved mainly by varying the ratio of hydrophobic: hydrophilic composition and the polymer molecular weight. Herein, we introduce polymer branching as a hitherto-overlooked polymer design parameter that exhibits profound influences on the rate and profile of drug release. Through a family of amphiphilic thermogelling polymers with systematic variations in degree of branching, we demonstrate that more highly-branched polymers are able to pack less efficiently with each other during thermogel formation, with implications on their physical properties and stability towards gel erosion. This in turn resulted in faster rates of release for both encapsulated small molecule hydrophobic drug and protein. Our results demonstrate the possibility of exploiting polymer branching as a hitherto-overlooked design parameter for tailoring the kinetics and profile of drug release in injectable thermogel depots.

17.
Biomaterials ; 280: 121262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810039

RESUMO

Vitreous endotamponades play essential roles in facilitating retina recovery following vitreoretinal surgery, yet existing clinically standards are suboptimal as they can cause elevated intra-ocular pressure, temporary loss of vision, and cataracts while also requiring prolonged face-down positioning and removal surgery. These drawbacks have spurred the development of next-generation vitreous endotamponades, of which supramolecular hydrogels capable of in-situ gelation have emerged as top contenders. Herein, we demonstrate thermogels formed from hyper-branched amphiphilic copolymers as effective transparent and biodegradable vitreous endotamponades for the first time. These hyper-branched copolymers are synthesised via polyaddition of polyethylene glycol, polypropylene glycol, poly(ε-caprolactone)-diol, and glycerol (branch inducing moiety) with hexamethylene diisocyanate. The hyper-branched thermogels are injected as sols and undergo spontaneous gelation when warmed to physiological temperatures in rabbit eyes. We found that polymers with an optimal degree of hyper-branching showed excellent biocompatibility and was able to maintain retinal function with minimal atrophy and inflammation, even at absolute molecular weights high enough to cause undesirable in-vivo effects for their linear counterparts. The hyper-branched thermogel is cleared naturally from the vitreous through surface hydrogel erosion and negates surgical removal. Our findings expand the scope of polymer architectures suitable for in-vivo intraocular therapeutic applications beyond linear constructs.


Assuntos
Tamponamento Interno , Corpo Vítreo , Animais , Hidrogéis , Peso Molecular , Poliésteres , Polietilenoglicóis , Coelhos , Corpo Vítreo/cirurgia
18.
Adv Mater ; 34(25): e2108360, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34726299

RESUMO

The traditional intravitreal injection delivery of antivascular endothelial growth factor (anti-VEGF) to the posterior segment of the eye for treatment of retinal diseases is invasive and associated with sight-threatening complications. To avoid such complications, there has been significant interest in developing polymers for topical drug delivery to the retina. This study reports a nanomicelle drug delivery system made of a copolymer EPC (nEPCs), which is capable of delivering aflibercept to the posterior segment topically through corneal-scleral routes. EPC is composed of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and polycaprolactone (PCL) segments. In this study, aflibercept-loaded nEPCs (nEPCs + A) are capable of penetrating the cornea in ex vivo porcine eye models and deliver a clinically significant amount of aflibercept to the retina in laser-induced choroidal neovascularization (CNV) murine models, causing CNV regression. nEPCs + A also demonstrate biocompatibility in vitro and in vivo. Interestingly, this study also suggests that nEPCs have intrinsic antiangiogenic properties. The ability to deliver anti-VEGF drugs and the intrinsic antiangiogenic properties of nEPCs may result in synergistic effects, which can be harnessed for effective therapeutics. nEPCs may be a promising topical anti-VEGF delivery platform for the treatment of retinal diseases.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Sistemas de Liberação de Medicamentos , Camundongos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão , Doenças Retinianas/complicações , Doenças Retinianas/tratamento farmacológico , Suínos , Fator A de Crescimento do Endotélio Vascular
19.
Anal Chem ; 93(46): 15543-15549, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34767713

RESUMO

Iodide (I-) is an essential micronutrient for thyroid function. Hence, rapid and portable sensing is important for I- quantification in food and biological samples. Herein, we report the first example of a halogen bonding (XB) tripodal ionophore (XB1) which is selective for the I- anion. NMR binding studies of XB1 and its H-triazole analog HB2 with I- demonstrated the dominant influence of XB interactions between the ionophore and the I- analyte. The phase boundary model was applied to formulate iodide-selective electrodes with the ionophore XB1. The optimal electrode exhibited a near-Nernstian response of -51.9 mV per decade within a large dynamic range (10-1 to 10-6 M) and notably anti-Hofmeister selectivity for I- over thiocyanate (SCN-), enabling the in situ determination of I- in complex samples. This work establishes XB as a viable supramolecular interaction in the potentiometric sensing of anions.


Assuntos
Halogênios , Iodetos , Eletrodos , Ionóforos , Potenciometria
20.
ChemSusChem ; 14(16): 3237-3243, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34232551

RESUMO

Gel polymer electrolytes are an important advancement in energy storage technology due to their enhanced safety and practical ionic conductivities at ambient temperatures. Herein, a simple one-step facile synthesis of chemically crosslinked polyurethanes containing polyethylene oxide (PEO) and polypropylene oxide (PPO) macromolecular segments was developed, using ubiquitous non-toxic tetrabutylammonium or potassium chloride and bromide salts as catalysts. These salts were shown to catalyze the gelation of diol-diisocyanate polyaddition reactions within minutes. When impregnated with a liquid electrolyte, the resulting gel electrolyte exhibited a practical ionic conductivity of 1.1×10-4  S cm-1 at 40 °C and low segmental chain motion activation energy (11 kJ mol-1 ). These findings further promote PEO-PPO polyurethanes as a biocompatible class of materials suitable for further exploration as gel polymer electrolytes for supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA