Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Nutr Food Res ; 68(14): e2400227, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031898

RESUMO

SCOPE: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS: In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS: Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.


Assuntos
Microbioma Gastrointestinal , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Receptores de Hidrocarboneto Arílico , Animais , Masculino , Camundongos , Citocinas/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Metionina/deficiência , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/terapia , Probióticos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Células Th17
2.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891033

RESUMO

Helicobacter pylori has been implicated in various gastrointestinal disorders, including functional dyspepsia. This study aimed to compare the anti-H. pylori activity and gastroprotective effects of three typical herbal formulas used for gastrointestinal disorders in Korea: Shihosogan-tang (ST), Yijung-tang (YT), and Pyeongwi-san (PS). Firstly, we assessed the total phenolic and flavonoid contents, as well as the antioxidative capacity. Additionally, we evaluated the antibacterial effect on H. pylori using an ammonia assay, minimum inhibitory concentration (MIC) test, and the disk agar diffusion method. Furthermore, we examined alterations in the gene expression of tight junction proteins, pro-inflammatory cytokines, and cellular vacuolation using an AGS cell model infected with H. pylori. While ST exhibited a higher total phenolic content, superior free radical scavenging, and inhibition of H. pylori compared to YT and PS, YT more evidently inhibited gastric cellular morphological changes such as vacuolation. All formulations significantly ameliorated changes in inflammatory and gastric inflammation-related genes and cellular morphological alterations induced by H. pylori infection. Overall, the present in vitro study suggests that all three herbal formulas possess potential for ameliorating gastrointestinal disorders, with ST relatively excelling in inhibiting H. pylori infection and inflammation, while YT potentially shows greater efficacy in directly protecting the gastric mucosa.


Assuntos
Dispepsia , Helicobacter pylori , Helicobacter pylori/efeitos dos fármacos , Dispepsia/tratamento farmacológico , Dispepsia/patologia , Humanos , Antibacterianos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Antioxidantes/farmacologia , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
J Ethnopharmacol ; 303: 115959, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436716

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall., is a traditional Chinese medicine which has the effects of regulating various inflammatory diseases, treating blood stasis, and enhancing blood circulation. AIM OF THE STUDY: This study examined whether Paeoniae Radix rubra extract (PRRE) and Paeoniflorin (PF) affect mucin production, gene expression including MUC5AC, and protein expression related to the ERK pathway induced by TNF-α from human airway epithelial cells. MATERIALS AND METHODS: NCI-H292 cells induced by TNF-α were treated with each agent. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction, staining, and enzyme-linked immunosorbent assay. Western blot was used to investigate the cell signaling pathways. RESULTS: PRRE and PF inhibited the production of MUC5AC mucin protein and gene expression in TNF-α-induced H292 cells. In Western blot, PRRE was involved in protein expression related to the ERK pathway. CONCLUSIONS: Overall, PRRE effectively inhibited the MUC5AC, and inflammatory cytokines expression caused by TNF-α, which was closely involved in the ERK pathway. PRRE may have the potential for treating mucus producing respiratory inflammation.


Assuntos
Paeonia , Humanos , Mucinas/genética , Mucinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais , Expressão Gênica
4.
Microorganisms ; 8(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937828

RESUMO

The identification of new probiotics with anti-obesity properties has attracted considerable interest. In the present study, the anti-obesity activities of Akkermansia muciniphila (A. muciniphila) strains isolated from human stool samples and their relationship with the gut microbiota were evaluated using a high fat-diet (HFD)-fed mice model. Three strains of A. muciniphila were chosen from 27 isolates selected based on their anti-lipogenic activity in 3T3-L1 cells. The anti-lipogenic, anti-adipogenic and anti-obesity properties of these three strains were evaluated further in HFD-induced obese mice. The animals were administered these strains six times per week for 12 weeks. The treatment improved the HFD-induced metabolic disorders in mice in terms of the prevention of body weight gain, caloric intake and reduction in the weights of the major adipose tissues and total fat. In addition, it improved glucose homeostasis and insulin sensitivity. These effects were also associated with the inhibition of low-grade intestinal inflammation and restoration of damaged gut integrity, prevention of liver steatosis and improvement of hepatic function. These results revealed a difference in the distribution pattern of the gut microbial communities between groups. Therefore, the gut microbial population modulation, at least in part, might contribute to the beneficial impact of the selected A. muciniphila strains against metabolic disorders.

5.
Am J Chin Med ; 48(6): 1409-1433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907360

RESUMO

Scutellaria baicalensis (SB), a herbal medicine, is commonly used to treat metabolic diseases, while Metformin (MF) is a widely used drug for type 2 diabetes. The purpose of this study was to investigate whether co-treatment of SB with MF could produce a potential therapeutic effect on high-fat and high-fructose diet (HFFD)-induced metabolic dysregulation. First, we optimized the dose of SB (100, 200, 400, and 800[Formula: see text]mg/kg) with MF (200[Formula: see text]mg/kg) in HFFD-induced C57BL6J mice. Next, the optimized dose of SB (400[Formula: see text]mg/kg) was co-administered with MF (50, 100, and 200[Formula: see text]mg/kg) in a similar animal model to find the effective combinations of SB and MF. Metabolic markers were determined in serum and tissues using different assays, histology, gene expression, and gut microbial population. The SB and MF co-treatment significantly decreased the body, liver, and VAT weights. The outcome of OGTT was improved, and the fasting insulin, HbA1c, TG, TC, LDL-c, AST, and ALT were decreased, while HDL-c was significantly increased. Histological analyses revealed maintained the integrity of liver, adipose tissue, and intestine prevented lipid accumulation in the liver and intestine and combated neuronal damage in the brain. Importantly, controlled the expression of PPAR[Formula: see text], and IL-6 genes in the liver, and expression of BDNF, Glut1, Glut3, and Glut4 genes in the brain. Treatment-specific gut microbial segregation was observed in the PCA chart. Our findings indicate that SB and MF co-treatment is an effective therapeutic approach for HFFD-induced metabolic dysregulation which is operated through the gut-liver-brain axis.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Metformina/administração & dosagem , Metformina/farmacologia , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Quimioterapia Combinada , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/microbiologia , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Scutellaria baicalensis
6.
Front Microbiol ; 10: 1292, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231354

RESUMO

Changes in environmental and genetic factors are vital to development of obesity and its complications. Induction of obesity and type 2 diabetes by both leptin deficiency (ob/ob) and high fat diet (HFD) has been verified in animal models. In the present experiment, three types of diets (normal diet; ND, HFD and high sucrose diet; HSD) and two types of genetic mice (Wild type: WT and ob/ob) were used to explore the relationship among diet supplements, gut microbiota, host genetics and metabolic status. HFD increased the body, fat and liver weight of both ob/ob and WT mice, but HSD did not. HFD also resulted in dyslipidemia, as well as increased serum transaminases and fasting glucose in ob/ob mice but not in WT mice, while HSD did not. Moreover, HFD led to brain BDNF elevation in WT mice and reduction in ob/ob mice, whereas HSD did not. Both HFD and HSD had a greater influence on gut microbiota than host genotypes. In detail, both of HFD and HSD alteration elucidated the majority (≥63%) of the whole structural variation in gut microbiota, however, host genetic mutation accounted for the minority (≤11%). Overall, diets more intensively disturbed the structure of gut microbiota in excess of genetic change, particularly under leptin deficient conditions. Different responses of host genotypes may contribute to the development of metabolic disorder phenotypes linked with gut microbiota alterations.

7.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888274

RESUMO

Several lines of evidence indicate that inflammatory bowel disease (IBD) is associated with Clostridium difficile (CD) infection as a consequence of gut dysbiosis. Currently available treatments of IBD are either not very effective or have adverse effects. Pyungwi-san (PWS), a traditional Chinese herbal formulation, has long been used to treat gastrointestinal disorders. The present study was conducted to investigate the efficacy of PWS against dextran sulfate sodium (DSS) + CD-induced IBD in mice. The animals received DSS in drinking water for seven days to produce DSS-induced acute colitis. In the DSS + CD group, the DSS-fed animals were orally administered with CD spores twice during the DSS treatment period. We observed that exposure of DSS + CD-treated animals to PWS significantly decreased the disease activity index; prevented the shortening of colonic length and increases in spleen size and weight; restored colonic histological parameters by significantly increasing mucus thickness, crypt depth, and goblet cell numbers; protected the tight junction proteins; improved the profiles of pro-inflammatory and anti-inflammatory cytokines; and normalized the abundance ratio of the Firmicutes/Bacteroidetes in the gut. Thus, PWS exerted a number of protective effects on DSS + CD-induced colitis, which might be mediated via restoration of a balance in gut microbial communities.


Assuntos
Clostridioides difficile/fisiologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Proteínas de Junções Íntimas/metabolismo
8.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342124

RESUMO

Targeting energy expenditure offers a strategy for treating obesity more effectively and safely. In previous studies, we found that the root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) increased energy metabolism in C2C12 cells. Here, we investigated the effects of ARA on obesity and glucose intolerance by examining energy metabolism in skeletal muscle and brown fat in high-fat diet (HFD) induced obese mice. ARA decreased body weight gain, hepatic lipid levels and serum total cholesterol levels, but did not modify food intake. Fasting serum glucose, serum insulin levels and glucose intolerance were all improved in ARA treated mice. Furthermore, ARA increased peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) expression, and the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle tissues, and also prevented skeletal muscle atrophy. In addition, the numbers of brown adipocytes and the expressions of PGC1α and uncoupling protein 1 (UCP1) were elevated in the brown adipose tissues of ARA treated mice. Our results show that ARA can prevent diet-induced obesity and glucose intolerance in C5BL/6 mice and suggests that the mechanism responsible is related to the promotion of energy metabolism in skeletal muscle and brown adipose tissues.


Assuntos
Atractylodes/química , Metabolismo Energético/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/prevenção & controle , Extratos Vegetais/química
9.
Front Microbiol ; 8: 2271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204141

RESUMO

The gut microbiota is important in energy contribution, metabolism and immune modulation, and compositional disruption of the gut microbiota population is closely associated with chronic metabolic diseases like type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Metformin (MET) and Flos Lonicera (FL) are common treatments for metabolic diseases in Western and Oriental medicinal fields. We evaluated the effect of treatment with FL and MET in combination on hepatosteatosis, glucose tolerance, and gut microbial composition. FL and MET were administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of genetic T2D and NAFLD. The FL+MET treatment reduced liver weight, serum cholesterol, insulin resistance, and hepatic MDA level and modulated the gut microbial composition. More specifically, the genera of Prevotella and Lactobacillus were negatively associated with the body and liver weights, hepatic TG and TC content, and serum insulin level. However, the relative abundance of these genera decreased in response to the FL+MET treatment. Interestingly, pathway prediction data revealed that the FL+MET treatment attenuated lipopolysaccharide-related pathways, in keeping with the decrease in serum and fecal endotoxin levels. FL and MET in combination exerts a synergistic effect on the improvement of hepatosteatosis and insulin sensitivity in OLETF rats, and modulates gut microbiota in association with the effect.

10.
Genes (Basel) ; 8(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937612

RESUMO

Metformin and Houttuynia cordata are representative anti-diabetic therapeutics in western and oriental medicine, respectively. The current study examined the synergistic anti-diabetic effect of Houttuynia cordata extraction (HCE) and metformin combination in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Fecal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Combining HCE + metformin resulted in significantly ameliorated glucose tolerance (oral glucose tolerance test (OGTT))-the same as metformin alone. Particularly, results of the insulin tolerance test (ITT) showed that combining HCE + metformin dramatically improved insulin sensitivity as compared to metformin treatment alone. Both fecal and serum endotoxin, as well as cytokines (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)) were significantly ameliorated by HCE + metformin compared to metformin alone. Meanwhile, the activation of AMPK (adenosine monophosphate-activated protein kinase) by metformin was distinctly enhanced by HCE. Both of HCE and metformin evidently changed the gut microbiota composition, causing the alteration of bacterial metabolite, like short-chain fatty acids. H. cordata, together with metformin, exerts intensive sensibilization to insulin; the corresponding mechanisms are associated with alleviation of endotoxemia via regulation of gut microbiota, particularly Roseburia, Akkermansia, and Gram-negative bacterium.

11.
PLoS One ; 12(9): e0182467, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877164

RESUMO

The radix of Scutellaria baicalensis (SB) is a herb widely used in traditional Chinese medicine to treat metabolic diseases. Several main components, including baicalin and wogonoside, possess anti-dyslipidemia, anti-obesity and anti-diabetic effects. We hypothesized that co-administration of SB extract and metformin exerts a better effect on obesity-induced insulin resistance and lipid metabolism than treatment with metformin alone. We compared the effect of metformin (100 mg/10 mL/kg/day) alone with co-administration of metformin (100 mg/5 mL/kg/day) and SB extract (200 mg/5 mL/kg/day) on Otsuka Long Evans Tokushima Fatty rats, a useful model of type II diabetes with obesity, and used Long-Evans Tokushima Otsuka rats as a control. Weight, fasting glucose, oral glucose tolerance test, intraperitoneal insulin tolerance test, and serum total cholesterol were measured after 12 weeks of drug administration. We observed a synergetic effect of metformin and SB on lowering cholesterol level by excretion of bile acid through feces. We found that this accompanied activation of FXR, CYP7A1 and LDLR genes and repression of HMGCR in the liver. Although there were no significant changes in BSH-active gut microbiota due to high variability, functional prediction with 16S sequences showed increased primary and secondary bile acid biosynthesis in the combination treatment group. Further study is needed to find the specific strains of bacteria which contribute to FXR-related cholesterol and bile acid regulations.


Assuntos
Ácidos e Sais Biliares/metabolismo , Homeostase/efeitos dos fármacos , Metformina/farmacologia , Extratos Vegetais/farmacologia , Algoritmos , Animais , Glicemia/metabolismo , Western Blotting , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Terapia Combinada , Fezes/química , Comportamento Alimentar/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metagenoma , Metformina/administração & dosagem , Filogenia , Extratos Vegetais/administração & dosagem , Análise de Componente Principal , Ratos Endogâmicos OLETF , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Scutellaria baicalensis , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA