Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
RNA Biol ; 11(9): 1171-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483042

RESUMO

RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway.


Assuntos
Animais Geneticamente Modificados/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Helicases/química , Interferência de RNA , RNA Interferente Pequeno/genética , Ribonuclease III/química , Glândulas Salivares/imunologia , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Northern Blotting , Western Blotting , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Imunofluorescência , Imunoprecipitação , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/genética , Ribonuclease III/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
2.
J Cell Sci ; 127(Pt 13): 2956-66, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24706949

RESUMO

Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Animais , Cromatina/genética , Drosophila , Proteínas de Drosophila/genética , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Masculino , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Nucleic Acids Res ; 41(5): 2963-80, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23358822

RESUMO

Chromatin insulators are functionally conserved DNA-protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3' to 5' RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs', which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome.


Assuntos
Cromatina/metabolismo , Drosophila melanogaster/genética , Exossomos/genética , Genoma de Inseto , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Células Cultivadas , Mapeamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Sítio de Iniciação de Transcrição , Transcrição Gênica
4.
FASEB J ; 25(1): 232-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20847228

RESUMO

Heterochromatin is a form of highly compacted chromatin associated with epigenetic gene silencing and chromosome organization. We have previously shown that unphosphorylated nuclear signal transducer and activator of transcription (STAT) physically interacts with heterochromatin protein 1 (HP1) to promote heterochromatin stability. To understand whether STAT and heterochromatin are important for maintenance of genome stability, we genetically manipulated the levels of unphosphorylated STAT and HP1 [encoded by Su(var)205] in Drosophila and examined the effects on chromosomal morphology and resistance to DNA damage under conditions of genotoxic stress. Here we show that, compared with wild-type controls, Drosophila mutants with reduced levels of unphosphorylated STAT or heterochromatin are more sensitive to radiation-induced cell cycle arrest, have higher levels of spontaneous and radiation-induced DNA damage, and exhibit defects in chromosomal compaction and segregation during mitosis. Conversely, animals with increased levels of heterochromatin exhibit less DNA damage and increased survival rate after irradiation. These results suggest that maintaining genome stability by heterochromatin formation and correct chromosomal packaging is essential for normal cellular functions and for survival of animals under genotoxic stress.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Instabilidade Genômica , Heterocromatina/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo Celular/efeitos da radiação , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quebra Cromossômica , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Heterocromatina/genética , Histonas/metabolismo , Imuno-Histoquímica , Larva/genética , Larva/metabolismo , Larva/efeitos da radiação , Masculino , Mitose , Mutação , Fosforilação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição STAT/genética
5.
Nat Cell Biol ; 10(4): 489-96, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18344984

RESUMO

STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9) . However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.


Assuntos
Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cicloeximida/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Inativação Gênica , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Lisina/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição STAT/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA