RESUMO
This study aimed to produce carotenoids by Phaffia rhodozyma in a stirred-tank bioreactor under the influence of magnetic fields (MF) and to evaluate a sustainable approach to recover them from the yeast biomass. MF application proved to be effective in increasing 8.6 and 22.9 % of ß-carotene and astaxanthin production, respectively. Regarding solid-liquid extraction (SLE), the ability of aqueous and ethanolic solutions of protic ionic liquids (PILs) was determined. ß-carotene and astaxanthin recovery yields increased with the anion alkyl chain length hydrophobicity. [Pro][Oct]:EtOH (50 % v v-1) was selected as the effective solvent. Moreover, it led to improvement in carotenoid stability at different storage temperatures over time in comparison with the control. This study is one of the first to describe an effective and sustainable approach to move carotenoid production from shake flasks to a bioreactor under the influence of MF and recover carotenoids from P. rhodozyma biomass.
Assuntos
Basidiomycota , beta Caroteno , Carotenoides , Reatores Biológicos , Etanol , Saccharomyces cerevisiaeRESUMO
Natural colorants from microbial fermentation have gained significant attention in the market to replace the synthetic ones. Talaromyces spp. produce yellow-orange-red colorants, appearing as a potential microorganism to be used for this purpose. In this work, the production of natural colorants by T. amestolkiae in a stirred-tank bioreactor is studied, followed by its application as additives in bio-based films. The effect of the pH-shift control strategy from 4.5 to 8.0 after 96 h of cultivation is evaluated at 500 rpm, resulting in an improvement of natural colorant production, with this increase being more significant for the orange and red ones, both close to 4-fold. Next, the fermented broth containing the colorants is applied to the preparation of cassava starch-based films in order to incorporate functional activity in biodegradable films for food packaging. The presence of fermented broth did not affect the water activity and total solids of biodegradable films as compared with the standard one. In the end, the films are used to pack butter samples (for 45 days) showing excellent results regarding antioxidant activity. It is demonstrated that the presence of natural colorants is obtained by a biotechnology process, which can provide protection against oxidative action, as well as be a functional food additive in food packing biomaterials.