Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 551: 205-216, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843988

RESUMO

Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33984421

RESUMO

Schizophrenia is a severe mental disorder with complex etiopathogenesis. Based on its neurodevelopmental features, an animal model induced by "two-hit" based on perinatal immune activation followed by peripubertal unpredictable stress was proposed. Sex influences the immune response, and concerning schizophrenia, it impacts the age of onset and symptoms severity. The neurobiological mechanisms underlying the influence of sex in schizophrenia is poorly understood. Our study aimed to evaluate sex influence on proinflammatory and oxidant alterations in male and female mice exposed to the two-hit model of schizophrenia, and its prevention by candesartan, an angiotensin II type 1 receptor (AT1R) blocker with neuroprotective properties. The two-hit model induced schizophrenia-like behavioral changes in animals of both sexes. Hippocampal microglial activation alongside the increased expression of NF-κB, and proinflammatory cytokines, namely interleukin (IL)-1ß and TNF-α, were observed in male animals. Conversely, females presented increased hippocampal and plasma levels of nitrite and plasma lipid peroxidation. Peripubertal administration of low-dose candesartan (0.3 mg/kg PO) prevented behavioral, hippocampal, and systemic changes in male and female mice. While these results indicate the influence of sex on inflammatory and oxidative changes induced by the two-hit model, candesartan was effective in both males and females. The present study advances the neurobiological mechanisms underlying sex influence in schizophrenia and opens new avenues to prevent this devasting mental disorder.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Fármacos Neuroprotetores , Receptor Tipo 1 de Angiotensina , Esquizofrenia/induzido quimicamente , Tetrazóis/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Poli I-C , Gravidez , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Fatores Sexuais , Fator de Necrose Tumoral alfa/metabolismo
3.
J Psychopharmacol ; 34(1): 125-136, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556775

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS: We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS: Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS: NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION: Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.


Assuntos
Acetilcisteína/farmacologia , Esquizofrenia/prevenção & controle , Caracteres Sexuais , Fatores Etários , Animais , Corpo Estriado/metabolismo , Feminino , Glutationa/metabolismo , Hipocampo/metabolismo , Peroxidação de Lipídeos , Locomoção/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Nitritos/metabolismo , Parvalbuminas/biossíntese , Poli I-C , Córtex Pré-Frontal/metabolismo , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Esquizofrenia/induzido quimicamente , Esquizofrenia/complicações , Filtro Sensorial/efeitos dos fármacos , Interação Social/efeitos dos fármacos , Estresse Psicológico/complicações , Receptor Nicotínico de Acetilcolina alfa7/biossíntese
4.
Front Psychiatry ; 10: 547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428001

RESUMO

Low-exploratory (LE) and high-exploratory (HE) rodents mimic human depressive and hyperthymic temperaments, respectively. Mood disorders (MD) may be developed by the exposure of these temperaments to environmental stress (ES). Psychiatric symptoms severity in MD patients is related to the magnitude of memory impairment. Thus, we aimed at studying the consequences of the exposure of LE and HE male Wistar rats, during periadolescence, to a combination of ES, namely, paradoxical sleep deprivation (PSD) and unpredictable stress (US), on anxiety-related behavior in the plus maze test, working (WM) and declarative memory (DM) performance. We also evaluated hippocampal immune-inflammatory/oxidative, as consequences of ES, and prevention of ES-induced alterations by the mood-stabilizing drugs, lithium and valproate. Medium exploratory (ME) control rats were used for comparisons with HE- and LE-control rats. We observed that HE-controls presented increased anxiolytic behavior that was significantly increased by ES exposure, whereas LE-controls presented increased anxiety-like behavior relative to ME-controls. Lithium and valproate prevented anxiolytic alterations in HE+ES rats. HE+ES- and LE+ES-rats presented WM and DM deficits. Valproate and lithium prevented WM deficits in LE-PSD+US rats. Lithium prevented DM impairment in HE+ES-rats. Hippocampal levels of reduced glutathione (GSH) increased four-fold in HE+ES-rats, being prevented by valproate and lithium. All groups of LE+ES-rats presented increased levels of GSH in relation to controls. Increments in lipid peroxidation in LE+ES- and HE+ES-rats were prevented by valproate in HE+ES-rats and by both drugs in LE+ES-rats. Nitrite levels were increased in HE+ES- and LE+ES-rats (five-fold increase), which was prevented by both drugs in LE+ES-rats. HE+ES-rats presented a two-fold increase in the inducible nitric oxide synthase (iNOS) expression that was prevented by lithium. HE+ES-rats showed increased hippocampal and plasma levels of interleukin (IL)-1ß and IL-4. Indoleamine 2, 3-dioxygenase 1 (IDO1) was increased in HE+ES- and LE+ES-rats, while tryptophan 2,3-dioxygenase (TDO2) was increased only in HE+ES-rats. Altogether, our results showed that LE- and HE-rats exposed to ES present distinct anxiety-related behavior and similar memory deficits. Furthermore, HE+ES-rats presented more brain and plasma inflammatory alterations that were partially prevented by the mood-stabilizing drugs. These alterations in HE+ES-rats may possibly be related to the development of mood symptoms.

5.
J Psychiatr Res ; 107: 57-67, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30326340

RESUMO

Major depressed patients show increased bacterial translocation with elevated plasma levels of lipopolysaccharide (LPS), which may trigger immune-inflammatory and neuro-oxidative responses. Recently, an animal model based on chronic LPS administration was developed which was associated with long-lasting depressive-like and neuro-oxidative alterations in female mice. The aim of the current study was to investigate behavioral, neuroimmune and neuroprogressive alterations in female mice 6 weeks after LPS chronic exposure. Female mice received increasing doses of LPS during 5 days at one-month intervals repeated for 4 consecutive months. Six weeks after the last LPS-exposure, we assessed behavioral despair and anhedonia, microglial activation, alterations in tryptophan, 5-HT, kynurenine, quinolinic acid (QUIN) levels and spermidine/spermine N1-acetyltransferase (SAT1) expression in the hippocampus, both with and without fluoxetine administration. Our results show that six weeks post-LPS, mice present behavioral despair and anhedonia in association with increased IBA1 expression (a microglia activation marker), NF-kB p65 and IL-1ß levels, indoleamine 2,3-dioxygenase (IDO1) mRNA expression, kynurenine, QUIN levels and QUIN/tryptophan ratio, and lowered tryptophan, 5-HT levels and SAT1 mRNA expression. Fluoxetine reversed the behavioral and neuroimmune alterations but had no effect in the reversal of IDO1 increased expression, QUIN levels and QUIN/tryptophan ratio. In conclusion, our results support the validity of the chronic LPS model of major depression and additionally shows its translational relevance with respect to neuroimmune and neuroprogressive pathways.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo Maior/induzido quimicamente , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/imunologia , Fluoxetina/farmacologia , Lipopolissacarídeos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Triptofano/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Fluoxetina/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
6.
Neurochem Int ; 63(3): 141-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747963

RESUMO

Arthropod venoms are potential sources of neuroactive substances, providing new tools for the design of drugs. The aim of this study was to evaluate the effects of Dinoponera quadriceps venom (DqV) on seizure models in mice induced by pentylenetetrazole (PTZ), pilocarpine, and strychnine. In the PTZ model, intraperitoneal treatment with DqV (0.5mg/kg) increased the time until the first seizure and the percentage of survival (155.4±27.7s/12.5%, p<0.05) compared to the control group (79.75±3.97s/0%), whereas endovenous treatment (0.1 and 0.5mg/kg) decreased the time until the first seizure (0.1mg/kg: 77.83±5.3s versus 101.0±3.3s in the control group; 0.5mg/kg: 74.43±3.9s versus 101.0±3.3s for the control group, p<0.05). We did not observe significant changes in the pilocarpine- and strychnine-induced seizure models. In assays that measured oxidative parameters in the PTZ model, intraperitoneal treatment with DqV (0.5 and 2.0mg/kg) only decreased the levels of MDA and nitrite in the cortex. However, endovenous treatment with DqV (0.1 and 0.5mg/kg) increased the levels of MDA in the cortex and hippocampus and at a dose of 0.5mg/kg in the striatum. Moreover, increased in nitrite content was observed in all three of the brain regions analyzed. Taken together, the D. quadriceps venom caused both neuroprotective and neurotoxic effects in a PTZ-induced seizure model, and this effect was dependent on the route of administration used.


Assuntos
Venenos de Formiga/farmacologia , Venenos de Formiga/toxicidade , Formigas , Modelos Animais de Doenças , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA