RESUMO
INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options. This study explores the potential of novel 5-nitro-thiophene-thiosemicarbazone derivatives as therapeutic agents for PDAC. METHODS: We evaluated the cytotoxicity of seven derivatives in peripheral blood mononuclear cells (PBMCs) and PDAC cell lines. Promising candidates (PR12 and PR17) were further analyzed for their effects on colony formation, cell cycle progression, and reactive oxygen species (ROS) production. PR17, the most promising derivative, was subjected to additional investigation, including analysis of autophagy-related genes and protein kinase inhibition. RESULTS: Three derivatives (PR16, PR19, and PR20) displayed cytotoxicity towards PBMCs. PR12 reduced colony formation and G0/G1 cell cycle arrest in PDAC cells. Notably, PR17 exhibited potent activity in MIA PaCa-2 cells, inducing S-phase cell cycle arrest, downregulating autophagy genes, and inhibiting key protein kinases. CONCLUSION: PR17, a 5-nitro-thiophene-thiosemicarbazone derivative, demonstrates promising antineoplastic activity against PDAC cells by potentially modulating cell cycle progression, autophagy, and protein kinase signaling. Further studies are warranted to elucidate the detailed mechanism of action and explore its efficacy in vivo.
Assuntos
Antineoplásicos , Autofagia , Carcinoma Ductal Pancreático , Pontos de Checagem do Ciclo Celular , Neoplasias Pancreáticas , Tiofenos , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Tiofenos/farmacologia , Tiofenos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Morte Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacosRESUMO
Clarisia racemosa Ruiz & Pav is a neotropical species found in humid forests from southern Mexico to southern Brazil. There are few studies related to the ethnopharmacological use of C. racemosa. Our objective was to evaluate the hydroalcoholic extract of C. racemosa as a potential antiparasitic agent. For this, we performed in vitro assays against strains of Leishmania amazonensis, Trypanosoma cruzi, Plasmodium falciparum, and Schistosoma mansoni. At the same time, immunomodulatory activity tests were carried out. The results demonstrated that the extract was able to stimulate and activate immune cells. In preliminary antiparasitic tests, structural modifications were observed in the promastigote form of L. amazonensis and in adult worms of S. mansoni. The extract was able to inhibit the growth of trypomastigote form of T. cruzi and finally showed low antiparasitic activity against strains of P. falciparum. It is pioneering work and these results demonstrate that C. racemosa extract is a promising alternative and contributes to the arsenal of possible forms of treatment to combat parasites. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03799-2.
RESUMO
The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 µM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 µM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.
Assuntos
Esquistossomose mansoni , Esquistossomicidas , Animais , Schistosoma mansoni/ultraestrutura , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Antiparasitários/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , MamíferosRESUMO
The present study proposed the synthesis of a novel acridine derivative not yet described in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activity against L. amazonensis strains and cytotoxicity against macrophages through MTT assay and annexin V-FITC/PI, and the ability to perform an immunomodulatory action using CBA. To investigate possible molecular targets, its interaction with DNA in vitro and in silico targets were evaluated. As results, the compound showed good antileishmanial activity, with IC50 of 6.57 (amastigotes) and 94.97 (promastigotes) µg mL-1, associated with non-cytotoxicity to macrophages (CC50 > 256.00 µg mL-1). When assessed by flow cytometry, 99.8% of macrophages remained viable. The compound induced an antileishmanial effect in infected macrophages and altered TNF-α, IL-10 and IL-6 expression, suggesting a slight immunomodulatory activity. DNA assay showed an interaction with the minor grooves due to the hyperchromic effect of 47.53% and Kb 1.17 × 106 M-1, and was sustained by docking studies. Molecular dynamics simulations and MM-PBSA calculations propose cysteine protease B as a possible target. Therefore, this study demonstrates that the new compound is a promising molecule and contributes as a model for future works.
RESUMO
The objective of this work was to isolate a polysaccharide similar to pectin from Crataeva tapia leaves, not yet reported in the literature, and to evaluate its antioxidant, cytotoxic and immunomodulatory profile. Pectin was extracted from the leaves in three stages, organic solvent followed by acidified water and ethanol precipitation. With the pectin obtained, the physicochemical characterization of the molecule was carried out using high-performance liquid chromatography, Fourier-transform infrared spectroscopy, nuclear magnetic resonance (13C and 1H) and different thermal and elemental analysis. Furthermore, the antioxidant activities were evaluated in vitro, and using human peripheral blood mononuclear cell culture, cytotoxicity and immunostimulatory actions were investigated. Physical and chemical analyses showed characteristic signs of pectin. Antioxidant activity tests showed that pectin had moderate to low antioxidant activity. Furthermore, pectin did not affect the viability of erythrocytes and PBMC and induced an immunostimulatory state when it promoted the production of cytokines IL-6, IL-10 and TNF-α and increased the activation of CD8 + T lymphocytes. This study showed that pectin from Crataeva tapia is not cytotoxic and promoted a pro-inflammatory profile in peripheral blood mononuclear cell with application as an immunostimulating and emulsifying compound.
RESUMO
Abstract Oxazolidine derivatives (OxD) have been described as third-line antibiotics and antitumoral agents. The inclusion complexes based on cyclodextrin could improve the solubility and bioavailability of these compounds. A novel synthetic OxD was used, and its inclusion complexes were based on 2-hydroxy-beta-cyclodextrin (2-HPßCD). We conducted an in silico study to evaluate the interaction capacity between OxD and 2-HPßCD. Characterization studies were performed through scanning electron microscopy (SEM), Fourier-transformed infrared (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), X-ray diffraction (XRD), and thermal analyses. A kinetic study of the OxD was performed, including a cytotoxicity assay using peripheral blood mononuclear cells (PBMCs). The maximum increment of solubility was obtained at 70 mM OxD using 400 mM 2-HPßCD. SEM analyses and FTIR spectra indicated the formation of inclusion complexes. 1H-NMR presented chemical shifts that indicated 1:1 stoichiometry. Different thermal behaviors were obtained. The pharmacokinetic profile showed a short release time. Pure OxD and its inclusion complex did not exhibit cytotoxicity in PBMCs. In silico studies provided a foremost insight into the interactions between OxD and 2-HPßCD, including a higher solubility in water and an average releasing profile without toxicity in normal cells
Assuntos
Solubilidade/efeitos dos fármacos , Ciclodextrinas/agonistas , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Antibacterianos/análiseRESUMO
Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.
RESUMO
Abstract Studies have shown that Caesalpinia pulcherrima extracts promote antioxidant, healing, immunomodulating and antiparasitic activities and its polysaccharides can be used as functional food. In this sense, this work had as objective the isolation and characterization of a polysaccharide-like pectin, extracted from the C. pulcherrima leaves and its possible applications as an antioxidant and immunomodulator agent. The molecule was characterized by high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Its antioxidant potential was evaluated through the methods of phosphomolybdenum, ABTS radical scavenging [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid], DPPH (1,1-diphenyl-2-picrylhydrazyl) and nitric oxide radical. The immunostimulating effects of pectin were tested in splenocytes to evaluate its toxic, proliferative and cell activator and immunomodulatory potential. The polysaccharide obtained has structural characteristics similar to pectins. Pectin showed high in vitro antioxidant activity for ABTS radical scavenging, moderate activity for phosphomolybdenum and low activity for DPPH and nitric oxide. In vitro immunomodulation assays showed that pectin obtained did not promote a cytotoxic effect (viability > 90%). The increase in cytosolic ROS levels indicates a possible mechanism of cell activation without causing damage. Immunophenotyping showed that pectin increased a subpopulation of CD8+ T lymphocytes and monocytes. In addition, it promoted a mostly pro-inflammatory response confirmed by the production of cytokines IL-2, -4, -6, IFN-γ and TNF-α. These results reinforce the ethnopharmacological use of C. pulcherrima leaves and expand the use of this plant for future applications as herbal medicines.
RESUMO
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Assuntos
Antivirais/uso terapêutico , Vacinas contra COVID-19/imunologia , COVID-19/terapia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologiaRESUMO
Reactive oxygen species (ROS) cause cell damage and death. To reverse these effects, cells produce substances such as reduced glutathione (GSH) that serve as substrates for antioxidant enzymes. One way to combat microbial resistance includes nullifying the effect of glutathione in microbial cells, causing them to die from oxidative stress. The compound 2-((5-nitrothiophen-2-yl)methylene)-N-(pyridin-3-yl) hydrazine carbothioamide (L10) is a new thiophene-thiosemicarbazone derivative with promising antifungal activity. The aim of this study was to evaluate its mechanism of action against Candida albicans using assays that evaluate its effects on redox balance. Treatment with L10 promoted significant changes in the minimum inhibitory concentration (MIC) values in ascorbic acid and GSH protection tests, the latter increasing up to 64-fold of the MIC. Using nuclear magnetic resonance, we demonstrated interaction of L10 and GSH. At concentrations of 4.0 and 8.0 µg/mL, significant changes were observed in ROS production and mitochondrial membrane potential. The cell death profile showed characteristics of initial apoptosis at inhibitory concentrations (4.0 µg/mL). Transmission electron microscopy data corroborated these results and indicated signs of apoptosis, damage to plasma and nuclear membranes, and to mitochondria. Taken together, these results suggest a possible mechanism of action for L10 antifungal activity, involving changes in cellular redox balance, ROS production, and apoptosis-compatible cellular changes.
Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tiofenos/farmacologia , Tiossemicarbazonas/farmacologia , Antifúngicos/química , Humanos , Estrutura Molecular , Tiofenos/química , Tiossemicarbazonas/químicaRESUMO
Parasitic diseases still represent serious public health problems, since the high and steady emergence of resistant strains is evident. Because parasitic infections are distributed predominantly in developing countries, less toxic, more efficient, safer and more accessible drugs have become desirable in the treatment of the infected population. This is the case of leishmaniasis, an infectious disease caused by a protozoan of the genus Leishmania sp., responsible for triggering pathological processes from the simplest to the most severe forms leading to high rates of morbidity and mortality throughout the world. In the search for new leishmanicidal drugs, the thiosemicarbazones and the indole fragments have been identified as promising structures for leishmanicidal activity. The present study proposes the synthesis and structural characterization of new indole-thiosemicarbazone derivatives (2a-j), in addition to performing in vitro evaluations through cytotoxicity assays using macrophages (J774) activity against forms of Leishmania infantum and Leishmania amazonensis promastigote as well as ultrastructural analyzes in promastigotes of L. infantum. Results show that the indole-thiosemicarbazone derivatives were obtained with yield values varying from 32.09 to 94.64%. In the evaluation of cytotoxicity, the indole-thiosemicarbazone compounds presented CC50 values between 53.23 and 357.97 µM. Concerning the evaluation against L. amazonensis promastigote forms, IC50 values ranged between 12.31 and > 481.52 µM, while the activity against L. infantum promastigotes obtained IC50 values between 4.36 and 23.35 µM. The compounds 2d and 2i tested against L. infantum were the most promising in the series, as they showed the lowest IC50 values: 5.60 and 4.36 respectively. The parasites treated with the compounds 2d and 2i showed several structural alterations, such as shrinkage of the cell body, shortening and loss of the flagellum, intense mitochondrial swelling and vacuolization of the cytoplasm leading the parasite to cellular unviability. Therefore, the indole-thiosemicarbazone compounds are promising because they yield considerable synthesis, have low cytotoxicity to mammalian cells and act as leishmanicidal agents.
Assuntos
Antiprotozoários/farmacologia , Indóis/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacosRESUMO
Twelve 2-(quinolin-4-ylmethylene) hydrazinecarbothioamide derivatives were synthetized and their biological properties were investigated, among which, the ability to interact with DNA and BSA through UV-Vis absorption, fluorescence, Circular Dichroism, molecular docking and relative viscosity, antiproliferative activity against MCF-7 and T-47D mammary tumor cells and RAW-264.7 macrophages and inhibitory capacity of the enzyme topoisomerase IIα. In the binding study with DNA and BSA, all the compounds displayed affinity for interaction with both biomolecules, especially JF-92 (p-ethyl-substituted), with binding constant of 1.62â¯×â¯106 and 1.43â¯×â¯105, respectively, and DNA binding mode by intercalation. The IC50 values were obtained between 0.81 and 1.48⯵M and topoisomerase inhibition results in 10⯵M. Thus, we conclude that the reduction of the acridine to quinoline ring did not disrupt the antitumor action and that substitution patterns are important for biomolecule interaction affinity as they demonstrate the potential of these compounds for anticancer therapy.
Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Quinolinas/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Células RAW 264.7 , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , ViscosidadeRESUMO
Thiazol and thiazolidinedione derivatives are known in the literature for presenting several biological activities, such as anti-diabetic, anti-inflammatory, antiparasitic, antifungal and antimicrobial activity. With this in mind, this study reports on the synthesis and antibacterial activity of thiazole (NJ) and thiazolidinedione (NW) derivatives, as well as their effects in association with norfloxacin, against NorA efflux pumps in the Staphylococcus aureus 1199B (SA-1199B) strain. Among the 14 compounds evaluated, 9 were found to potentiate norfloxacin activity, with 4 compounds from the NJ series promoting a threefold norfloxacin MIC reduction. Molecular docking assays were used to confirm the binding mode of most active compounds. In the in silico study, the efficiency of the interaction of NJ series compounds with the NorA pump were evaluated. Derivatives from both series did not show considerable intrinsic antibacterial activity (MICâ¯>â¯1024⯵g/mL) against any of the tested strains. However, the NJ16 and NJ17 compounds, when associated with norfloxacin, reduced the MIC of this drug threefold and inhibited NorA pumps in the 1199B strain. Moreover, some NW (05, 10, 18, 19 and 21) and NJ compounds (16, 17, 18 and 20) presented low to moderate cytotoxicity against normal cells. Molecular docking studies supported the potent in vitro inhibitory activity of NJ16 and NJ17, which showed NJ16 and NJ17 possessed more favorable binding energies of -9.03â¯Kcal/mol and -9.34â¯Kcal/mol, respectively. In addition, NJ16 showed different types of interactions involved in complex stabilization. In conclusion, NJ16 and NJ17, in combination with norfloxacin, were able to completely restore the antibacterial activity of norfloxacin against S. aureus SA-1199B, the norA-overexpressing strain, with low cytotoxicity in normal cells.
Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Norfloxacino/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Norfloxacino/química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/químicaRESUMO
Here, we evaluate spiroacridines as inhibitors of tyrosinase, a key enzyme to melanogenesis. For this purpose, the spiroacridines 3-(acridin-9-yl)-N-benzylidene-2-cyanoacrylohydrazide (AMTAC-01) and 3-(acridin-9-yl)-2-cyano-N-(4-metoxybenzylidene)-acrylohydrazide (AMTAC-02) were synthesized and their enzymatic inhibition types and mechanisms were investigated. In addition, the interaction of these compounds with the enzyme were studied by UV-Vis spectroscopy, spectrofluorimetry, 1H NMR titration as well as molecular docking. Spectroscopic results reveals that the acridine derivatives interact strongly (Kaâ¯â â¯104â¯-â¯105 M-1) with the mushroom tyrosinase and the enzyme undergoes small structural modifications due to the interaction with AMTAC-01 compound. The interaction studies support the enzymatic inhibition results, which suggests that AMTAC-01 compounds inhibit the enzyme reversibly and follows a noncompetitive type (AMTAC-01) and mixed type (AMTAC-02) of inhibition. Nevertheless, AMTAC-02 (IC50â¯=â¯96.29 µM) inhibits the enzyme more effectively than AMTAC-01 (IC50â¯=â¯189.40 µM), which suggests a highly relevant role of AMTAC-02's methoxy group to the inhibition activity, which is confirmed by docking studies to mushroom tyrosinase. Docking also indicates this interaction to be absent in human tyrosinase. SIGNIFICANCE: Based on previous results which evidenced the relevant activity of two spiroacridinic compounds for cell growth inhibition against melanoma cells, here we improve our understanding about the spiroacridines in the biological media by exploring the molecular mechanism that govern the activities of these two compounds using mushroom tyrosinase (mTYR) enzyme as molecular target. The paper not only will have a major impact upon molecular mechanism that regulates melanin inhibition by spiroacridinic compounds, but also by guiding the search for enzyme inhibitors and the development of new anti-melanoma prophylaxis.
Assuntos
Acridinas/química , Acridinas/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Compostos de Espiro/química , Acridinas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Monofenol Mono-Oxigenase/química , Ligação Proteica , Conformação ProteicaRESUMO
Nine new spiroacridine derivatives were synthetized by introducing cyano-N-acylhydrazone group between the acridine and phenyl-substituted rings followed by spontaneous cyclization. The new compounds were assayed for their DNA binding properties, human topoisomerase IIα inhibition and bovine serum albumin (BSA) interaction. Besides, docking analysis were performed in order to better understanding the biomolecule-compounds interactions. All compounds interacted with BSA which was demonstrated by the fluorescence suppression constant of 104â¯M-1. Compounds with chloro and NO2 substituents at that para-position on phenyl ring demonstrated the best results for BSA interaction. DNA binding constant determined by UV-vis data demonstrated high values for AMTAC-11 and AMTAC-14, 1.1â¯×â¯108â¯M-1 and 4.8â¯×â¯106â¯M-1, respectively, and all others presented constant values of 105â¯M-1. AMTAC-06 with chloro at para-position on phenyl ring presented a topoisomerase II inhibition of 84.34% in comparison to the positive controls used. Docking studies indicated that AMTAC-06 is able to intercalate the DNA base pairs at topoisomerase IIα active site, preventing DNA connection after break, in a process known as poisoning. Topoisomerase enzyme inhibition result was correlated to BSA interaction profile, since AMTAC-06 showed the best results in both analysis. The findings obtained here proved that methoxy or chloro substitution on phenyl ring at para-position is fundamental for in vitro activity of new spiroacridine derivatives, and indicates that AMTAC-06 is a promising entity and should serve as a lead compound in the development of new DNA and protein binders, as well as human topoisomerase II inhibitors.
Assuntos
Acridinas/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/química , Soroalbumina Bovina/química , Inibidores da Topoisomerase II/farmacologia , Acridinas/síntese química , Acridinas/química , Animais , Bovinos , Relação Dose-Resposta a Droga , Fluorescência , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3a-j) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5â¯h of carrageenan injection at the 30â¯mgâ¯kg-1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.
Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Acilação , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carragenina , Linhagem Celular , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/enzimologia , Feminino , Humanos , Hidrazonas/síntese química , Hidrazonas/uso terapêutico , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos Endogâmicos BALB C , Simulação de Acoplamento MolecularRESUMO
Oxazolidine derivatives (OxD) are five ring-membered compounds that contain at least one oxygen and nitrogen in their molecular structure. OxD are known due to several therapeutic activities such as anticancer and antibiotic properties. In this paper, we performed a thermodynamic analysis of the mixed films composed by dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphoethanolamine (DPPE), dipalmitoyl phosphatidylcholine (DPPC) or L-α phosphatidylcholine (PC) with a novel oxazolidine derivate (OxD). Relevant thermodynamic parameters such as excess areas (ΔAE), excess free energies (ΔG), and Gibbs free energy of mixing (AGmix) were derived from the surface pressure data. The topographical analysis was performed using atomic force microscopy. Based on the calculated values of the thermodynamic parameters, we observed that the miscibility of the mixed films was directly dependent on their composition. DPPG/OxD and DPPE/OxD systems present the best-mixed character at low pressures at OxD molar fraction equivalent to 0.25.
Assuntos
Oxazóis/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Microscopia de Força Atômica , Fosfatidilgliceróis/química , Fosforilcolina/química , TermodinâmicaRESUMO
In this study, we synthesized eight new compounds containing the 2-amino-cycloalkyl[b]thiophene and acridine moieties (ACT01 and ACS01 -ACS07 ). None tested compounds presented human erythrocyte cytotoxicity. The new compounds presented antipromastigote activity, where ACS01 and ACS02 derivatives presented significant antileishmanial activity, with better performance than the reference drugs (tri and pentavalent antimonials), with respective IC50 values of 9.60 ± 3.19 and 10.95 ± 3.96 µm. Additionally, these two derivatives were effective against antimony-resistant Leishmania (Leishmania) amazonensis strains. In addition, binding and fragmentation DNA assays were performed. It was observed that the antileishmanial activity of ACS01 is not associated with DNA fragmentation of the promastigote forms. However, it interacted with DNA with a binding constant of 104 m-1 . In partial least-squares studies, it was observed that the most active compounds (ACS01 and ACS02 ) showed lower values of amphiphilic moment descriptor, but there was a correlation between the lipophilicity of the molecules and antileishmanial activity. Furthermore, the docking molecular studies showed interactions between thiophene-acridine derivatives and the active site of pyruvate kinase enzyme with the major contribution of asparagine 152 residue for the interaction with thiophene moiety. Thus, the results suggested that the new thiophene-acridine derivatives are promising molecules as potential drug candidates.
Assuntos
Acridinas/química , Antiprotozoários/síntese química , DNA de Protozoário/química , Simulação de Acoplamento Molecular , Tiofenos/química , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Sítios de Ligação , Domínio Catalítico , DNA de Protozoário/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Relação Estrutura-AtividadeRESUMO
Schistosomiasis is considered a serious public health problem in 78 countries and territories located in Africa, Asia and America and it is estimated in more than 249 million people infected by any of the species of Schistosoma. The exclusive use of praziquantel (PZQ), effective drug against all species of Schistosoma, has been the basis of the development of a possible resistance against the strains of this parasite. In addition, PZQ is not effective against young forms of worms. Thus, there is a need for the development of new drugs with schistosomicidal activity. The objective of this work was to synthesize and to evaluate the therapeutic potential of new benzodioxole derivatives (3-14) candidates for schistosomicidal drugs. All compounds synthesized showed in vitro schistosomicidal activity. The derivative 12 was considered the best compound, since it took 100% of worms to mortality in the first 72â¯h of exposure at the concentration of 100⯵M and 83.3% at the concentration of 50⯵M. Furthermore, male and female adult worms, incubated for 24â¯h with the compound 12 showed tegument damages characterized by extensive desquamation and edema, tuber destruction, bubble formation and exposure of the muscle layer. This compound has a restricted structure, where the thiazolidinone is attached to the 4-position of the 1,3-benzodioxol ring. The structural conformation of derivative 12 was probably responsible for the promising schistosomicidal activity, where the presence of an electron/conformational restriction of the thiazolidine ring, as well as the action of bromine as a bulk substitute, favored an increase in biological activity. In addition, tegumentary changes caused by derivative 12 may also have been responsible for the death of adult worms of Schistosoma mansoni. Therefore, we verified that the results obtained in this study make benzodioxole derivatives possible candidates for prototypes of new schistosomicidal drugs.
Assuntos
Dioxóis/química , Dioxóis/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/síntese química , Esquistossomicidas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Dioxóis/uso terapêutico , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoni/ultraestrutura , Esquistossomose/tratamento farmacológico , Esquistossomose/patologia , Esquistossomicidas/uso terapêuticoRESUMO
Substitutions in thiophene structure give rise to new derivatives with different biological and pharmacological activities. The present study investigated the cytotoxicity activity of some thiophene derivatives in breast cancer cells maintained in two-dimensional (2D) or in three-dimensional (3D) culture and evaluated the anticancer mechanism of these compounds. Cytotoxicity assays were performed against untransformed cells and against breast cancer cell MCF-7. Apoptosis analysis and in-vitro migration assay were also performed to evaluate the mechanism of induction of cell death. All thiophene derivatives reduced the cell viability in breast cancer cells, showing cytotoxic activity (IC50<30 µmol/l), and SB-200 compound showed the best selectivity index in MCF-7 cells compared with doxorubicin in 2D culture. All thiophene derivatives significantly induced G0/G1 phase cell cycle arrest. However, only SB-83 treatment was effective against motility of MCF-7 cells in 2D culture (P=0.0059). The SB-200 derivative treatment induced an increased proportion of acridine orange/Hoechst double-stained cells (35.35 vs. 3.14%, P=0.0002) compared with nontreated cells, with apoptosis morphological alterations independent of caspase 7 activation (P>0.05). MCF-7 cells became less responsive to SB-200 and to doxorubicin in 3D culture compared with cells in 2D culture (higher IC50 values); however, SB-200 showed a better cytotoxic effect compared with doxorubicin in 3D culture. Therefore, the current study provides an insight into anticancer potential of thiophene derivatives, and further studies should be conducted to understand the mechanism by which thiophene derivatives act on cancer cells.