Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(18): 10247-10256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683760

RESUMO

Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.


Assuntos
Fitoestrógenos , Trifolium , Trifolium/metabolismo , Trifolium/química , Trifolium/crescimento & desenvolvimento , Fitoestrógenos/metabolismo , Fitoestrógenos/análise , Água/metabolismo , Água/análise , Isoflavonas/metabolismo , Isoflavonas/análise , Secas , Genisteína/análise , Genisteína/metabolismo
2.
Front Pharmacol ; 12: 761551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899314

RESUMO

The growth location and plant variety may influence the active components and biological activities of plants used in phytomedicine. In this study, nine sets of different Epimedii Folium, from different representative cultivation locations and Epimedium species, were collected for comparison, using HPLC-DAD combined with multivariate analysis. The objective was to investigate the influence of geographical origin and Epimedium species on the quality of Epimedii Folium, and provide applicable guidance for cultivation and quality control of Epimedii Folium. Several Epimedium spp. sets were used to establish the HPLC-DAD fingerprints and 91 peaks (compounds) were selected for the multivariate analysis. Major compounds were analyzed by HPLC-DAD combined with principal component analysis (PCA). HPLC quantitative analysis of known bioactive compounds was performed. Application of PCA to HPLC data showed that Epimedium samples sharing the same geographical origin or species clustered together, indicating that both species and geographical origin have impacts on the quality of Epimedii Folium. The major bioactive flavonoid compounds, epimedin C, icariin and baohuoside I, were identified and quantified. The concentration of bioactive compounds was significantly influenced both by species and geographical origin. E. sagittatum from Sichuan showed the highest content of bioactive compounds. The results showed that both Epimedium species and geographical origin have strong impact into quality of Epimedii Folium. HPLC data combined with multivariate analysis is a suitable approach to inform the selection of cultivation areas and choose Epimedium spp. most suitable for different geographical areas, resulting in improved quality of Epimedii Folium.

3.
Phytopathology ; 107(6): 669-680, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28402211

RESUMO

Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera 'Chardonnay' plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.


Assuntos
Ascomicetos/fisiologia , Metabolômica , Doenças das Plantas/microbiologia , Vitis/fisiologia , Aminoácidos/metabolismo , Secas , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fotossíntese/fisiologia , Estresse Fisiológico , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/microbiologia , Xilema/química , Xilema/crescimento & desenvolvimento , Xilema/microbiologia , Xilema/fisiologia
4.
Plant Physiol Biochem ; 112: 45-52, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039815

RESUMO

Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data.


Assuntos
Fenóis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Biomassa , Cromatografia Líquida de Alta Pressão , Análise de Componente Principal , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 13(6): 3075-87, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24738838

RESUMO

Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.


Assuntos
Glycine max/metabolismo , Ferro/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Aminoácidos/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica , Análise Multivariada , Estresse Oxidativo , Extratos Vegetais/metabolismo
6.
J Exp Bot ; 61(14): 4033-42, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20709726

RESUMO

Esca is a destructive disease that affects vineyards leading to important losses in wine production. Information about the response of Vitis vinifera plants to this disease is scarce, particularly concerning changes in plant metabolism. In order to study the metabolic changes in Vitis plants affected by esca, leaves from both infected and non-affected cordons of V. vinifera cv. Alvarinho (collected in the Vinho Verde region, Portugal) were analysed. The metabolite composition of leaves from infected cordons with visible symptoms [diseased leaves (dl)] and from asymptomatic cordons [healthy leaves (hl)] was evaluated by 1D and 2D (1)H-nuclear magnetic resonance (NMR) spectroscopy. Principal component analysis (PCA) of the NMR spectra showed a clear separation between dl and hl leaves, indicating differential compound production due to the esca disease. NMR/PCA analysis allowed the identification of specific compounds characterizing each group, and the corresponding metabolic pathways are discussed. Altogether, the study revealed a significant increase of phenolic compounds in dl, compared with hl, accompanied by a decrease in carbohydrates, suggesting that dl are rerouting carbon and energy from primary to secondary metabolism. Other metabolic alterations detected comprised increased levels of methanol, alanine, and gamma-aminobutyric acid in dl, which might be the result of the activation of other defence mechanisms.


Assuntos
Doenças das Plantas , Vitis/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica , Folhas de Planta/metabolismo , Análise de Componente Principal , Vitis/química , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA