Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuronal Signal ; 7(2): NS20220034, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37520658

RESUMO

Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.

2.
Oxid Med Cell Longev ; 2019: 8419810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772712

RESUMO

Anxiety is a common symptom associated with high caffeine intake. Although the neurochemical mechanisms of caffeine-induced anxiety remain unclear, there are some evidences suggesting participation of oxidative stress. Based on these evidences, the current study is aimed at evaluating the possible protective effect of alpha-tocopherol (TPH) against anxiety-like behavior induced by caffeine (CAF) in zebrafish. Adult animals were treated with CAF (100 mg/kg) or TPH (1 mg/kg)+CAF before behavioral and biochemical evaluations. Oxidative stress in the zebrafish brain was evaluated by a lipid peroxidation assay, and anxiety-like behavior was monitored using light/dark preference and novel tank diving test. Caffeine treatment evoked significant elevation of brain MDA levels in the zebrafish brain, and TPH treatment prevented this increase. Caffeine treatment also induced anxiety-like behavior, while this effect was not observed in the TPH+CAF group. Taken together, the current study suggests that TPH treatment is able to inhibit oxidative stress and anxiety-like behavior evoked by caffeine.


Assuntos
Antioxidantes/uso terapêutico , Ansiedade/induzido quimicamente , Cafeína/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , alfa-Tocoferol/uso terapêutico , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Feminino , Peixe-Zebra , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA