Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Talanta ; 277: 126330, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833905

RESUMO

In this work, flower-like ZnO nanoparticles (ZnONPs) were synthesized using zinc nitrate (Zn(NO3)2 6H2O) as a precursor with KOH. The morphology of the ZnONPs was controlled by varying the synthesis temperature at 50, 75 and 95 °C. The morphology and structure of ZnONPs were characterized using Scanning Electron Microscopy, and X-Ray Diffraction and Brunauer-Emmett Teller analysis. ZnONPs were successfully synthesized by a simple chemical precipitation method. A synthesis temperature of 75 °C produced the most suitable flower-like ZnONPs, which were combined with graphene nanoplatelets to develop a label-free electrochemical immunosensor for the detection of the colon cancer biomarker carcinoembryonic antigen in human serum. Under optimum conditions, the developed immunosensor showed a linear range of 0.5-10.0 ng mL-1 with a limit of detection of 0.44 ng mL-1. The label-free electrochemical immunosensor exhibited good selectivity, reproducibility, and repeatability, and recoveries were excellent. The immunosensor is used with a Near-Field Communication potentiostat connected to a smartphone to facilitate point-of-care cancer detection in low-resource locations.


Assuntos
Antígeno Carcinoembrionário , Óxido de Zinco , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Óxido de Zinco/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Nanopartículas/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
2.
Talanta ; 277: 126406, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901193

RESUMO

An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.

3.
Mikrochim Acta ; 191(7): 417, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913195

RESUMO

A novel electrochemical sensor was developed for the detection of lead (Pb) and copper (Cu) ions using spent coffee grounds decorated with iron oxide particles (FeO/SCG). The FeO-decorated SCG was used to modify a glassy carbon electrode (GCE). FeO, SCG, and FeO/SCG were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical properties of the modified electrode were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrode modifications increased the active surface area and electron transfer and enhanced the accumulation of the target analyte. In the optimal condition, the developed sensor showed linear ranges of 1.0 µg L-1-0.05 mg L-1 and 0.05 mg L-1-0.8 mg L-1 for Pb2+ and 5.0 µg L-1-0.1 mg L-1 and 0.1 mg L-1-0.8 mg L-1 for Cu2+. The limit of detection (LOD) was 1.0 µg L-1 for Pb2+ and 2.4 µg L-1 for Cu2+. The developed sensor was successfully applied to determine Pb2+ and Cu2+ in bullet holes. The results were in good agreement with those obtained by inductively coupled plasma optical emission spectrometry (ICP/OES).

4.
Talanta ; 278: 126446, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936107

RESUMO

The simultaneous synthesis of gold nanoparticles (AuNPs) and graphene by laser ablation was demonstrated. The in-situ synthesis was performed by laser ablation of a polymer substrate covered with a gold precursor dispersion. The gold precursor was prepared in a copolymer solution of pyrrole (Py) and chitosan (Chi) to improve the nucleation of gold embedded on the laser-induced graphene electrode (LIGE). The morphology of AuNPs-pPy-Chi/LIGE was studied by scanning electron microscopy and characterized electrochemically by cyclic voltammetry. A comprehensive investigation of the electrochemical and physical features of the AuNPs-pPy-Chi/LIGE was carried out. The parameters of differential pulse voltammetry were adjusted to enhance the response to ascorbic acid (AA). The AuNPs-pPy-Chi/LIGE produced two linear ranges: from 0.25 to 5.00 and 5.00-25.00 mmol L-1. The limit of detection was 0.22 mmol L-1. Hundreds of electrodes were tested to demonstrate the excellent reproducibility of the AuNPs-pPy-Chi/LIGE fabrication. Overall, the proposed electrode allows the successful detection of AA in orange juice products with acceptable accuracy (recoveries = 97 ± 2 to 109.1 ± 0.7). The preparation strategy of the proposed AuNPs-pPy-Chi/LIGE could be adapted to detect other compounds or biomarkers.

5.
Talanta ; 276: 126179, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718644

RESUMO

A novel cost-effective disposable porous graphene electrode (P-GE) modified with bismuth nanoneedles (nano-BiNDs) is proposed as a "mercury-free" sensor for detecting heavy metals through smartphone-assisted electrochemical sensing. The P-GE was fabricated using screen-printing. Nano-BiNDs were generated on the P-GE by potentiostatic electrodeposition. Using an optimal potential of -1.20 V (vs. pseudo-Ag/AgCl) and a deposition time of 200 s, the nano-BiNDs had an average length and width of 189 ± 5 nm and 20 ± 2 nm, respectively. The analytical performances of the fabricated sensing platform were demonstrated by detecting Cd2+ and Pb2+ using square-wave anodic stripping voltammetry (SWASV) under optimized conditions. In the optimal conditions, the fabricated sensor exhibited sharp, well-defined stripping peaks for Cd2+ and Pb2+ with excellent peak-to-peak separation. The linear detection ranges were from 0.01 to 50 µg mL-1 for Cd2+ and 0.006-50 µg mL-1 for Pb2+. The detection limits for Cd2+ and Pb2+ were 3.51 and 2.10 ng mL-1, respectively. The developed portable sensor demonstrated high sensitivity, good repeatability, reproducibility, and anti-interference properties. The proposed portable sensor quantified Cd2+ and Pb2+ in commercial seaweed products with good accuracy, consistent with the results obtained using the standard ICP-OES method.

6.
Talanta ; 274: 125912, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547843

RESUMO

The 96 laser-induced multigraphene electrode (96L-MGE) integrated microwell plate (96 L-MGE-MP) is described. Each cell includes separate working, auxiliary, and reference electrodes, and the array sits on a poly-methyl methacrylate (PMMA) well. The 96 electrochemical cells were fabricated by laser ablation of polyimide adhesive tape, which created laser-induced graphene electrodes (L-GE). The microwell was produced using laser ablation of the PMMA sheet as well. The morphology and electrochemical characterization of L-GE were controlled by tuning the laser processing. L-GE fabricated at laser power-laser speed ratios of 0.008-0.02 W s mm-1displayed good electrochemical behaviors. Under the optimal condition of L-GE fabrication, the measured L-GE surface roughness was 475.47 nm. The 96 L-MGE can be fabricated in 24.2 min and is compatible with various analytes. 10 benchmark redox compounds were shown as electrocatalytic examples. The performance of each analyte was investigated by voltammetry. As proof of concept, 96 L-MGE-MP was connected to a 96× connector for multichannel detection. The RSD of the 96 L-MGE-MPwas below 5.3%, which demonstrated good fabrication reproducibility.

7.
Food Chem ; 447: 138987, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518621

RESUMO

Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano­palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 µM and the limit of detection was 0.0033 µM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.


Assuntos
Bismuto , Nitritos , Paládio , Sulfetos , Microesferas , Smartphone , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas
8.
Talanta ; 273: 125857, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490024

RESUMO

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quitosana , Ferrocianetos , Nanopartículas Metálicas , Carbono , Ouro , Limite de Detecção , Cloranfenicol/análise , Reprodutibilidade dos Testes , Eletrodos , Carne , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
9.
Talanta ; 272: 125751, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377665

RESUMO

We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 µg L-1 with a detection limit of 14.5 µg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.

10.
Talanta ; 272: 125822, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422904

RESUMO

This work introduces a 3D-printed portable electroplating device for the visualization of latent fingerprints (LFPs) on metallic substrates. An electroplating solution of Ag+-Cu2+ in a deep eutectic solvent (DES) is used. The electroplating is performed by two electrodes equivalent to an anode (+) and a cathode (-). The cathode is connected to the metal surface with the magnetic or alligator clip for carrying the LFP. The anode is connected to cotton dipped in the electroplating solution. The device was optimized in terms of the electroplating solution composition, and electroplating potential, current, and time. The device produced images with good resolution, revealing LFP ridges in minute detail of more than 12 points. The device also exhibited good repeatability and images were assessed against guidelines from the Centre for Applied Science and Technology (CAST) and the International Fingerprint Research Group (IFRG). The developed device could be applied to visualize LFPs in forensic investigations.

11.
Talanta ; 272: 125755, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364561

RESUMO

A novel label-free electrochemical immunosensor was prepared for the detection of carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) as biomarkers of cholangiocarcinoma (CCA). A nanocomposite of gold nanoparticles, molybdenum trioxide, and chitosan (Au-MoO3-Chi) was layer-by-layer assembled on the porous graphene (PG) modified a dual screen-printed electrode using a self-assembling technique, which increased surface area and conductivity and enhanced the adsorption of immobilized antibodies. The stepwise self-assembling procedure of the modified electrode was further characterized morphologically and functionally. The electroanalytical detection of biomarkers was based on the interaction between the antibody and antigen of each marker via linear sweep voltammetry using ferrocyanide/ferricyanide as an electrochemical redox indicator. Under optimized conditions, the fabricated immunosensor showed linear relationships between current change (ΔI) and antigen concentrations in two ranges: 0.0025-0.1 U mL-1 and 0.1-1.0 U mL-1 for CA19-9, and 0.001-0.01 ng mL-1 and 0.01-1.0 ng mL-1 for CEA. The limits of detection (LOD) were 1.0 mU mL-1 for CA19-9 and 0.5 pg mL-1 for CEA. Limits of quantitation (LOQ) were 3.3 mU mL-1 for CA19-9 and 1.6 pg mL-1 for CEA. The selectivity of the developed immunosensor was tested on mixtures of antigens and was then successfully applied to determine CA19-9 and CEA in human serum samples, producing satisfactory results consistent with the clinical method.


Assuntos
Técnicas Biossensoriais , Colangiocarcinoma , Grafite , Nanopartículas Metálicas , Humanos , Grafite/química , Antígeno Carcinoembrionário , Ouro/química , Técnicas Biossensoriais/métodos , Antígeno CA-19-9 , Sistemas Automatizados de Assistência Junto ao Leito , Porosidade , Nanopartículas Metálicas/química , Imunoensaio/métodos , Eletrodos , Limite de Detecção , Colangiocarcinoma/diagnóstico , Técnicas Eletroquímicas/métodos
12.
Talanta ; 265: 124769, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329752

RESUMO

The urinary albumin to creatinine ratio (ACR) is a convenient and accurate biomarker of chronic kidney disease (CKD). An electrochemical sensor for the quantification of ACR was developed based on a dual screen-printed carbon electrode (SPdCE). The SPdCE was modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and redox probes of polymethylene blue (PMB) for creatinine and ferrocene (Fc) for albumin. The modified working electrodes were then molecularly imprinted with coated with polymerized poly-o-phenylenediamine (PoPD) to form surfaces that could be separately imprinted with creatinine and albumin template molecules. The seeded polymer layers were polymerized with a second coating of PoPD and the templates were removed to form two different molecularly imprinted polymer (MIP) layers. The dual sensor presented recognition sites for creatinine and albumin on different working electrodes, enabling the measurement of each analyte in one potential scan of square wave voltammetry (SWV). The proposed sensor produced linear ranges of 5.0-100 ng mL-1 and 100-2500 ng mL-1 for creatinine, and 5.0-100 ng mL-1 for albumin. LODs were 1.5 ± 0.2 ng mL-1 and 1.5 ± 0.3 ng mL-1, respectively. The dual MIP sensor was highly selective and stable for seven weeks at room temperature. The ACRs obtained using the proposed sensor compared well (P > 0.05) with the results from immunoturbidimetric and enzymatic methods.


Assuntos
Impressão Molecular , Nanotubos de Carbono , Humanos , Polímeros Molecularmente Impressos , Creatinina , Nanotubos de Carbono/química , Albuminúria/diagnóstico , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
13.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185521

RESUMO

An innovative modular approach for facile design and construction of flexible microfluidic biosensor platforms based on a dry manufacturing "craft-and-stick" approach is developed. The design and fabrication of the flexible graphene paper electrode (GPE) unit and polyethylene tetraphthalate sheet (PET)6/adhesive fluidic unit are completed by an economic and generic xurographic craft approach. The GPE widths and the microfluidic channels can be constructed down to 300 µm and 200 µm, respectively. Both units were assembled by simple double-sided adhesive tapes into a microfluidic integrated GPE (MF-iGPE) that are flexible, thin (<0.5 mm), and lightweight (0.4 g). We further functionalized the iGPE with Prussian blue and glucose oxidase for the fabrication of MF-iGPE glucose biosensors. With a closed-channel PET fluidic pattern, the MF-iGPE glucose biosensors were packaged and sealed to protect the integrated device from moisture for storage and could easily open with scissors for sample loading. Our glucose biosensors showed 2 linear dynamic regions of 0.05-1.0 and 1.0-5.5 mmol L-1 glucose. The MF-iGPE showed good reproducibility for glucose detection (RSD < 6.1%, n = 6) and required only 10 µL of the analyte. This modular craft-and-stick manufacturing approach could potentially further develop along the concept of paper-crafted model assembly kits suitable for low-resource laboratories or classroom settings.


Assuntos
Técnicas Biossensoriais , Grafite , Microfluídica , Reprodutibilidade dos Testes , Glucose , Glucose Oxidase , Eletrodos , Técnicas Eletroquímicas
14.
Mikrochim Acta ; 190(6): 232, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37213023

RESUMO

A simple label-free electrochemical immunosensor for ovarian cancer (OC) detection was developed using a hierarchical microporous carbon material fabricated from waste coffee grounds (WCG). The analysis method exploited near-field communication (NFC) and a smartphone-based potentiostat. Waste coffee grounds were pyrolyzed with potassium hydroxide and used to modify a screen-printed electrode. The modified screen-printed electrode was decorated with gold nanoparticles (AuNPs) to capture a specific antibody. The modification and immobilization processes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor had an effective dynamic range of 0.5 to 50.0 U mL-1 of cancer antigen 125 (CA125) tumor marker with a correlation coefficient of 0.9995. The limit of detection (LOD) was 0.4 U mL-1. A comparison of the results obtained from human serum analysis with the proposed immunosensor and the results obtained from the clinical method confirmed the accuracy and precision of the proposed immunosensor.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Ovarianas , Feminino , Humanos , Carbono , Nanopartículas Metálicas/química , Ouro/química , Café , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Neoplasias Ovarianas/diagnóstico
15.
Talanta ; 256: 124266, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693284

RESUMO

Near-field communication (NFC) was used to control a portable glucose biosensor for diabetes diagnosis. The system comprised a smartphone and an NFC potentiostat connected to a screen-printed carbon electrode (SPCE) modified with Prussian blue-graphene ink and functionalized with gold nanoparticles-embedded poly (3,4ethylene dioxythiophene):polysulfonic acid coated with glucose oxidase (GOx-AuNPs-PEDOT:PSS/PB-G). GOx catalyzed the glucose redox reaction while the conductivity and sensitivity of the AuNPs-PEDOT:PSS composite enhanced electron transfer to the PB-G, which was used as a mediator. The fabrication process was characterized by scanning electron microscopy (SEM) with energy dispersibe x-ray analysis (EDX). The platform was electrochemically characterized by electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The NFC biosensing device was then applied to quantify glucose in human blood serum by amperometry. The linear concentration range and detection limit for glucose were 0.5-500 µM and 0.15 µM, respectively. The accuracy of the device was good and results were in agreement with the results obtained from the standard hospital method. This NFC glucose sensing device can be a simple, sensitive, selective and portable platform for medical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Ouro/química , Smartphone , Automonitorização da Glicemia , Glicemia , Técnicas Biossensoriais/métodos , Glucose/análise , Glucose Oxidase/química , Eletrodos , Enzimas Imobilizadas/química
16.
Talanta ; 255: 124229, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641867

RESUMO

A compact and low-cost multi-electrode array (MEA) is presented, comprising four working electrodes with shared reference and auxiliary electrodes. Prussian blue was electrodeposited on the MEA using chronoamperometry with a positive potential of 0.3 V. Prussian blue nanocubes (PBNCs) were formed, which were observed using scanning electron microscopy. The precision of the four working electrodes was demonstrated using ferric/ferro cyanide (RSD <5.8%). The surface roughness of the working electrodes of the fabricated MEA was investigated by atomic force microscopy and compared with that of a commercial MEA. The PBNCs were the platform for a label-free immunosensor that detected four breast cancer tumor markers (CEA, CA125, CA153, and CA199) using specific antibodies. The processes of antibody immobilization were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The immunosensor was evaluated using real human serum samples, yielding acceptable recoveries (95.1-104.1%, RSD < 3.9) for the four tumor markers. These findings confirmed that our label-free immunosensor based on PBNCs could be a promising device for point-of-care testing and could pave the way for the establishment of new platforms for the screening of various breast cancer tumor markers.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Humanos , Feminino , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos , Eletrodos
17.
Talanta ; 254: 124169, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549140

RESUMO

We developed a fully integrated smart sensing device for on-site testing of food to detect trace formaldehyde (FA). A nano-palladium grafted laser-induced graphene (nanoPd@LIG) composite was synthesized by one-step laser irradiation of a Pd2+-chitosan-polyimide precursor. The composite was synthesized in the form of a three-electrode sensor on a polymer substrate. The electrochemical properties and morphology of the fabricated composite were characterized and the electrochemical kinetics of FA oxidation at the nanoPd@LIG electrode were investigated. The nanoPd@LIG electrode was combined with a smart electrochemical sensing (SES) device to determine FA electrochemically. The proposed SES device uses near field communication (NFC) to receive power and transfer data between a smartphone interface and a battery-free sensor. The proposed FA sensor exhibited a linear detection range from 0.01 to 4.0 mM, a limit of detection of 6.4 µM, good reproducibility (RSDs between 2.0 and 10.1%) and good anti-interference properties for FA detection. The proposed system was used to detect FA in real food samples and the results correlated well with the results from a commercial potentiostat and a spectrophotometric analysis.


Assuntos
Grafite , Grafite/química , Paládio/química , Reprodutibilidade dos Testes , Smartphone , Eletrodos , Lasers , Formaldeído , Técnicas Eletroquímicas/métodos
18.
Talanta ; 254: 124137, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463801

RESUMO

Insulin is the polypeptide hormone that regulates blood glucose levels. It is used as an indicator of both types of diabetes. An electrochemical insulin sensor was developed using a gold electrode modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and molecularly imprinted polymer (MIP) cryogel. The MIP provided specific recognition sites for insulin, while the macropores of the cryogel promoted the mass transfer of insulin to the recognition sites. The f-MWCNTs increased the effective surface area and conductivity of the sensor and also reduced the potential required to oxidize insulin. Insulin oxidation was directly measured in a flow system using square wave voltammetry. This MIP cryogel/f-MWCNTs sensor provided a linear range of 0.050-1.40 pM with a very low limit of detection (LOD) of 33 fM. The sensor exhibited high selectivity and long-term stability over 10 weeks of dry storage at room temperature. The results of insulin determination in human serum using the sensor compared well with the results of the Elecsys insulin assay. The developed MIP sensor offers a promising alternative for the diagnosis and treatment of diabetes.


Assuntos
Diabetes Mellitus , Impressão Molecular , Nanotubos de Carbono , Humanos , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Insulina , Criogéis , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Diabetes Mellitus/diagnóstico
19.
J Forensic Sci ; 68(1): 75-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36273275

RESUMO

Drugs-facilitated crimes (DFCs) involve the incapacitation of victims under the influence of drugs. Conventionally, a drug administration act is often determined through the examination of biological samples; however, dry residues from any surface, such as drinking glass if related to a DFC could be a potential source of evidence. This study was aimed to establish an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for the determination of spiked sedative-hypnotics from dry residues of a drug-spiked beverage. In this study, four sedative-hypnotics, namely diazepam, ketamine, nimetazepam, and xylazine were examined using ATR-FTIR spectroscopy. Subsequently, the ATR-FTIR profiles were compared and decomposed by principal component analysis (PCA) followed by linear discriminant analysis (LDA) for their detection and discrimination. Visual comparison of ATR-FTIR profiles revealed distinct spectra among the tested drugs. An initial unsupervised exploratory PCA model indicated the separation of four main sedative-hypnotics clusters, and the proposed PCA score-LDA model had allowed for a 100% accurate classification. Discrimination of sedative-hypnotics from a dry beverage previously spiked with these drugs was also possible upon an additional extraction procedure. In conclusion, ATR-FTIR coupled with PCA score-LDA model was useful in detecting and discriminating sedative-hypnotics, including those that had been previously spiked into a beverage.


Assuntos
Bebidas , Quimiometria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Análise de Componente Principal , Hipnóticos e Sedativos
20.
Anal Methods ; 14(35): 3366-3374, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039897

RESUMO

This work presents the development of a microplate spectrophotometric method for determination of indole-3-carbinol in dietary supplements. The colorimetric procedure is based on the reaction of indole-3-carbinol with the p-dimethylaminocinnamaldehyde (DMACA) reagent under acidic conditions. The absorbance of the colored product measured at 675 nm was used to determine the target analyte. To achieve optimal spectrophotometric performance, the DMACA reagent concentration, the hydrochloric acid concentration, and the reaction time were optimized. The developed technique performed well under the optimal conditions, with a linear calibration range of 30 to 300 mg L-1 and a high correlation coefficient (r2 = 0.9954). The limit of detection and limit of quantification were 7.8 mg L-1 and 26.2 mg L-1, respectively. This approach demonstrated good repeatability (intra- and inter-day precision) with a % RSD lower than 9.4%, good accuracy with acceptable relative recoveries in the range of 98 to 106%, and high sample throughput (24 detection per min). This simple, rapid, and multi-sample analysis approach for routine analysis of indole-3-carbinol has the potential to be used for the quality control of dietary supplements.


Assuntos
Suplementos Nutricionais , Ácido Clorídrico , Cinamatos , Indicadores e Reagentes , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA