Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Commun Signal ; 18(2): e12030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946726

RESUMO

The aim of this study is to investigate the effects of POSTN on IL-1ß induced inflammation, apoptosis, NF-κB pathway and intervertebral disc degeneration (IVDD) in Nucleus pulposus (NP) cells (NPCs). NP tissue samples with different Pfirrmann grades were collected from patients with different degrees of IVDD. Western blot and immunohistochemical staining were used to compare the expression of POSTN protein in NP tissues. Using the IL-1ß-induced IVDD model, NPCs were transfected with lentivirus-coated si-POSTN to down-regulate the expression of POSTN and treated with CU-T12-9 to evaluate the involvement of NF-κB pathway. Western blot, immunofluorescence, and TUNEL staining were used to detect the expression changes of inflammation, apoptosis and NF-κB pathway-related proteins in NPCs. To investigate the role of POSTN in vivo, a rat IVDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-POSTN, and H&E staining and immunohistochemical staining were performed. POSTN expression is positively correlated with the severity of IVDD in human. POSTN expression was significantly increased in the IL-1ß-induced NPCs degeneration model. Downregulation of POSTN protects NPCs from IL-1ß-induced inflammation and apoptosis. CU-T12-9 treatment reversed the protective effect of si-POSTN on NPCs. Furthermore, lentivirus-coated si-POSTN injection partially reversed NP tissue damage in the IVDD model in vivo. POSTN knockdown reduces inflammation and apoptosis of NPCs by inhibiting NF-κB pathway, and ultimately prevents IVDD. Therefore, POSTN may be an effective target for the treatment of IVDD.

2.
J Back Musculoskelet Rehabil ; 36(6): 1345-1354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458019

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural disorder of the spine in adolescents, often associated with structural deformities in both coronal and axial positions. Apical vertex rotation (AVR) is one of the main indicators of axial deformity in patients with scoliosis. Currently, there are few studies on the impact of AVR in the treatment of AIS. OBJECTIVE: This study examined the influence of different AVR on AIS after brace treatment. METHODS: Data were collected from 106 AIS participants aged 11-16 years from the orthopedic outpatient clinic of the Second Hospital of Lanzhou University. Two orthopaedic professionals measured the Cobb angle, AVR and spinal mid-line offset before and after brace treatment, and descriptive and linear correlation analyses were used to determine the correlation between AVR and AIS measured parameters. RESULTS: (1) In AIS volunteers with the same AVR, the treatment effect of AIS with lumbar predominant curvature was higher than that of AIS with thoracic predominant curvature. The treatment effect tended to decrease with increasing AVR. (2) Spinal mid-line deviation was associated with AVR. For patients with AIS with I and II degrees of AVR, the treatment effect of spinal mid-line offset after bracing is better. For AIS patients with AVR III degrees and above, the degree of correction of spinal mid-line offset decreases with the continuous correction of Cobb angle. CONCLUSIONS: The efficacy of AIS was found to be related to the severity of AVR. The efficacy of AIS with predominantly lumbar curvature was significantly higher than that of AIS with predominantly thoracic curvature. The efficacy of treatment of mid-line spinal deviation also decreased with increasing AVR.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Escoliose/terapia , Rotação , Vértebras Torácicas , Estudos Retrospectivos , Resultado do Tratamento
3.
Mediators Inflamm ; 2022: 2579003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966334

RESUMO

Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Extrato de Sementes de Uva , Microglia/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Cell Prolif ; 55(9): e13275, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35754255

RESUMO

OBJECTS: Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine-threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. MATERIALS AND METHODS: By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. RESULTS: Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro-inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. CONCLUSION: The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.


Assuntos
Fosfatidilinositol 3-Quinases , Traumatismos da Medula Espinal , Apoptose , Axônios/metabolismo , Gliose , Humanos , Inflamação , Regeneração Nervosa , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/uso terapêutico , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo
5.
Cell Cycle ; 21(21): 2268-2282, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35758219

RESUMO

N-acetylserotonin (NAS) exerts neuroprotective, antioxidant, and anti-apoptotic effects. Oxidative stress and apoptosis are the primary causes of spinal cord injury (SCI). Herein, we explored potential protective effects and mechanisms of NAS in a neuron oxidative damage model in vitro. We established an oxidative damage model in PC12 cells induced by hydrogen peroxide (H2O2) and treated these cells with NAS. NAS enhanced the activity of superoxide dismutase and halted the increase in reactive oxygen species (ROS) and the expression of inducible nitric oxide synthase. Additionally, NAS promoted protein expression of Bcl-2, but inhibited protein expressions of Fas, FADD, cytochrome c, Bax, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas and mitochondrial pathways. Furthermore, it reduced the rate of apoptosis and necroptosis-related protein expressions of MLKL and p-MLKL. Moreover, NAS promoted the protein expression of p-PI3K and p-AKT, and the addition of the PI3K inhibitor LY294002 partially attenuated the antioxidant stress and anti-apoptotic effects of NAS in H2O2 stimulated PC12 cells. In conclusion, NAS protected PC12 cells from apoptosis and oxidative stress induced by H2O2 by inhibiting ROS activity and activating the PI3K/AKT signaling pathway.


Assuntos
Peróxido de Hidrogênio , Fosfatidilinositol 3-Quinases , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Serotonina/análogos & derivados , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Connect Tissue Res ; 63(6): 650-662, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35491814

RESUMO

BACKGROUND: Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action. METHODS: Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-ß-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16). RESULTS: Pretreatment with PACs exhibited protective effects against IL-1ß-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1ß-treated NP cells. SA-ß-gal staining showed that IL-1ß-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1ß-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment. CONCLUSION: The results of the present study showed that PACs inhibit IL-1ß-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Proantocianidinas , Envelhecimento , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 9/farmacologia , Células Cultivadas , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Qualidade de Vida , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteína Supressora de Tumor p53/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
7.
J Cell Commun Signal ; 16(4): 515-530, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35412260

RESUMO

Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-ß, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34394398

RESUMO

Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.

9.
PLoS One ; 8(1): e53919, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326536

RESUMO

Pax6 is a pivotal transcription factor that plays a role during early eye morphogenesis, but its expression and function in eyelid development remain unknown. In this study, the expression patterns of Pax6 mRNA and protein were examined in the developing mouse eyelid at embryonic days 14.5, 15.5, and 16.5. The function of Pax6 in eyelid development was determined by comparing it to that in the eyes-open-at-birth mutant mouse. In the normally developing eyelid, Pax6 and Pax6(5a) mRNA levels were low at E14.5, increased at E15.5, and then declined at E16.5, accompanied by a change in the Pax6/Pax6(5a) ratio. Pax6 protein was mainly located in the mesenchyme and conjunctiva. It was expressed at low levels in the epidermis at E14.5, severely reduced at E15.5, but re-expressed in the keratinocyte cells of the periderm at E16.5. In contrast, Pax6 and the Pax6/Pax6(5a) ratio were considerably higher with strong nuclear expression in the mutant at E15.5. Next, we examined the relationship of Pax6 to epidermal cell proliferation, migration, and the associated signalling pathways. The Pax6 protein in the developing eyelid was negatively correlated with epidermal cell proliferation but not migration, and it is in contrast to the activation of the EGFR-ERK pathway. Our in vivo data suggest that Pax6 expression and the Pax6/Pax6(5a) ratio are at relatively low levels in the eyelid, and acting as a transcription factor, Pax6 is required for the initiation of eyelid formation and for differential development of the keratinised cells in the closed eyelid. The Pax6 protein is likely to be controlled by the EGFR-ERK pathways. An abnormal increase in Pax6 expression and the Pax6/Pax6(5a) ratio due to alteration of the pathway activity could suppress epidermal cell proliferation leading to the eyes-open-at-birth defect. This study offers insight into the function of the Pax6 protein in eyelid development.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas do Olho/genética , Pálpebras/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , RNA Mensageiro/genética , Proteínas Repressoras/genética , Animais , Proliferação de Células , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Mutação , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese , Proteína Smad3/biossíntese , Proteína Smad3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA