Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(15): 6203-6211, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023366

RESUMO

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolômica/métodos , Redes e Vias Metabólicas , Interações Medicamentosas
2.
Front Psychiatry ; 13: 998709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620683

RESUMO

Introduction: Schizophrenia (SZ) is a severe chronic mental disorder with increased risk of hepatitis B virus (HBV) infection, which is incurable currently and induces various negative emotions and psychological pressures in patients to exacerbate mental disorders. To facilitate the therapeutic design for SZ patients complicated with HBV infection (SZ + HBV), it is helpful to first elucidate the metabolic perturbations in SZ + HBV patients. Methods: In this study, metabolic profiles of the serum samples from four groups of participants comprising healthy controls (HC, n = 72), HBV infection (n = 52), SZ patients (n = 37), and SZ + HBV (n = 41) patients were investigated using a high-resolution 1H NMR-based metabolomics approach. Results and discussion: Distinguishable metabolic profiles were found in the four groups. In comparison with HC, HBV infection induced increased levels of citrate and succinate to perturbate the tricarboxylic acid cycle and succinate-related pathways. Similar to SZ cases, SZ + HBV patients exhibited decreased glucose but increased citrate, pyruvate, and lactate, suggesting the occurrence of disturbance in glucose metabolism. Moreover, in comparison with HC, several serum amino acid levels in SZ + HBV patients were significantly altered. Our findings suggest that Warburg effect, energy metabolism disorders, neurotransmitter metabolism abnormalities, mitochondrial dysfunction and several disturbed pathways in relation to tyrosine and choline appear to play specific and central roles in the pathophysiology of SZ + HBV. Apart from replicating metabolic alterations induced by SZ and HBV separately (e.g., in energy metabolism and Warburg effect), the specific metabolic abnormalities in the SZ + HBV group (e.g., several tyrosine- and choline-related pathways) highlighted the existence of a synergistic action between SZ and HBV pathologies. Current study revealed the metabolic alterations specific to the interaction between SZ and HBV pathologies, and may open important perspectives for designing precise therapies for SZ + HBV patients beyond the simple combination of two individual treatments.

3.
J Proteome Res ; 19(2): 781-793, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31916767

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Because of its high recurrence rate and heterogeneity, effective treatment for advanced stage of HCC is currently lacking. There are accumulating evidences showing the therapeutic potential of pharmacologic vitamin C (VC) on HCC. However, the metabolic basis underlying the anticancer property of VC remains to be elucidated. In this study, we used a high-resolution proton nuclear magnetic resonance-based metabolomics technique to assess the global metabolic changes in HCC cells following VC treatment. In addition, the HCC cells were also treated with oxaliplatin (OXA) to explore the potential synergistic effect induced by the combined VC and OXA treatment. The current metabolomics data suggested different mechanisms of OXA and VC in modulating cell growth and metabolism. In general, VC treatment led to inhibition of energy metabolism via NAD+ depletion and amino acid deprivation. On the other hand, OXA caused significant perturbation in phospholipid biosynthesis and phosphatidylcholine biosynthesis pathways. The current results highlighted glutathione metabolism, and pathways related to succinate and choline may play central roles in conferring the combined effect between OXA and VC. Taken together, this study provided metabolic evidence of VC and OXA in treating HCC and may contribute toward the potential application of combined VC and OXA as complementary HCC therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Ascórbico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Metaboloma , Recidiva Local de Neoplasia , Oxaliplatina/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Prótons
4.
Parasit Vectors ; 12(1): 300, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196218

RESUMO

BACKGROUND: Hepatic alveolar echinococcosis (HAE) is caused by the growth of Echinococcus multilocularis larvae in the liver. It is a chronic and potentially lethal parasitic disease. Early stage diagnosis for this disease is currently not available due to its long asymptomatic incubation period. In this study, a proton nuclear magnetic resonance (1H NMR)-based metabolomics approach was applied in conjunction with multivariate statistical analysis to investigate the altered metabolic profiles in blood serum and urine samples obtained from HAE patients. The aim of the study was to identify the metabolic signatures associated with HAE. RESULTS: A total of 21 distinct metabolic differences between HAE patients and healthy individuals were identified, and they are associated with perturbations in amino acid metabolism, energy metabolism, glyoxylate and dicarboxylate metabolism. Furthermore, the present results showed that the Fischer ratio, which is the molar ratio of branched-chain amino acids to aromatic amino acids, was significantly lower (P < 0.001) in the blood serum obtained from the HAE patients than it was in the healthy patient group. CONCLUSIONS: The altered Fischer ratio, together with perturbations in metabolic pathways identified in the present study, may provide new insights into the mechanistic understanding of HAE pathogenesis and potential therapeutic interventions.


Assuntos
Aminoácidos/metabolismo , Equinococose Hepática/metabolismo , Metaboloma , Adulto , Equinococose Hepática/sangue , Equinococose Hepática/urina , Metabolismo Energético , Feminino , Humanos , Fígado/parasitologia , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Adulto Jovem
5.
Sci Rep ; 7(1): 6820, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754994

RESUMO

Acupuncture is a traditional Chinese medicine therapy that has been found useful for treating various diseases. The treatments involve the insertion of fine needles at acupoints along specific meridians (meridian specificity). This study aims to investigate the metabolic basis of meridian specificity using proton nuclear magnetic resonance (1H NMR)-based metabolomics. Electro-acupuncture (EA) stimulations were performed at acupoints of either Stomach Meridian of Foot-Yangming (SMFY) or Gallbladder Meridian of Foot-Shaoyang (GMFS) in healthy male Sprague Dawley (SD) rats. 1H-NMR spectra datasets of serum, urine, cortex, and stomach tissue extracts from the rats were analysed by multivariate statistical analysis to investigate metabolic perturbations due to EA treatments at different meridians. EA treatment on either the SMFY or GMFS acupoints induced significant variations in 31 metabolites, e.g., amino acids, organic acids, choline esters and glucose. Moreover, a few meridian-specific metabolic changes were found for EA stimulations on the SMFY or GMFS acupoints. Our study demonstrated significant metabolic differences in response to EA stimulations on acupoints of SMFY and GMFS meridians. These results validate the hypothesis that meridian specificity in acupuncture is detectable in the metabolome and demonstrate the feasibility and effectiveness of a metabolomics approach in understanding the mechanism of acupuncture.


Assuntos
Eletroacupuntura/métodos , Metaboloma , Animais , Sangue/metabolismo , Encéfalo/metabolismo , Eletroacupuntura/efeitos adversos , Mucosa Gástrica/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA