Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 314: 120344, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206891

RESUMO

Pathogens can colonize plant endosphere and, be transferred into human beings through the food chain. However, our understanding of the influences of agricultural activities, such as fertilization, on endophytic microbial communities and human pathogens is still limited. Here, we conducted a microcosm experiment using the combination of 16 S rRNA gene amplicon sequencing and high-throughput qPCR array to reveal the effects of manure fertilization on microbiomes of soils and plants and how such impact is translated into endophytic pathogens. Our results showed that manure fertilization significantly altered soil microbiomes, whereas with less influence on endophytic microbial communities. Soil is a vital source of both bacterial communities and human pathogens for the plant endosphere. The abundance of pathogens was increased both in soils and endosphere under manure fertilization. These findings provide an integrated understanding of the impact of manure fertilization on endophytic pathogens.


Assuntos
Esterco , Microbiologia do Solo , Humanos , Verduras , Solo , Fertilização
2.
Sci Total Environ ; 820: 153170, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35051473

RESUMO

Spread of antibiotic resistance or the presence of antibiotic resistance genes (ARGs) in pathogens is a globally recognized threat to human health. Numerous studies have shown that application of organic fertilizers may increase the risk of ARGs, however, the risk of resistance genes associated with biofertilizers is largely unknown. To investigate whether biofertilizer application introduces ARGs to the soil, we used high-throughput quantitative polymerization chain reaction (HT-qPCR) to explore the effect of biofertilizer application over three years on soil ARGs in three orchards with different locations in China. Redundancy analysis showed specific and significant differences in the beta diversity of soil bacteria and fungi between treatments (fertilizer vs. no fertilizer). One-way ANOVA analysis revealed findings of the main driver of the significant difference in microbial community structure between fertilizer and control treatment was the change in soil properties following the application of biofertilizer. A total of 139 ARGs and 27 MGEs (mobile genetic elements), and 46 ARGs and 6 MGEs from 11 major taxa were detected in biofertilizer and soil samples, respectively. Only the samples from Guangxi had significant differences in the detected number of ARGs and MGEs between fertilization and control. Through structural equation modeling (SEM), we found that soil properties indirectly affected ARGs by shaping bacterial diversity, while bacterial abundance directly affected ARGs. Biofertilizer application did not significantly alter the relative abundance of ARGs in soil due to the complexity of the soil environment and competition between exogenous and native microorganisms. This study provided new insights into the spread of the antibiotic resistome of the soil through biofertilizer applications.


Assuntos
Microbiologia do Solo , Solo , Antibacterianos/análise , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Esterco/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA