Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(2): e0212909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818355

RESUMO

In Klebsiella pneumoniae CG43S3, deletion of the response regulator gene rcsB reduced the capsular polysaccharide amount and survival on exposure to acid stress. A comparison of the pH 4.4-induced proteomes between CG43S3 and CG43S3ΔrcsB revealed numerous differentially expressed proteins and one of them, YfdX, which has recently been reported as a periplasmic protein, was absent in CG43S3ΔrcsB. Acid survival analysis was then conducted to determine its role in the acid stress response. Deletion of yfdX increased the sensitivity of K. pneumoniae CG43S3 to a pH of 2.5, and transforming the mutant with a plasmid carrying yfdX restored the acid resistance (AR) levels. In addition, the effect of yfdX deletion was cross-complemented by the expression of the periplasmic chaperone HdeA. Furthermore, the purified recombinant protein YfdX reduced the acid-induced protein aggregation, suggesting that YfdX as well as HdeA functions as a chaperone. The following promoter activity measurement revealed that rcsB deletion reduced the expression of yfdX after the bacteria were subjected to pH 4.4 adaptation. Western blot analysis also revealed that YfdX production was inhibited by rcsB deletion and only the plasmid expressing RcsB or the nonphosphorylated form of RcsB, RcsBD56A, could restore the YfdX production, and the RcsB-mediated complementation was no longer observed when the sensor kinase RcsD gene was deleted. In conclusion, this is the first study demonstrating that YfdX may be involved in the acid stress response as a periplasmic chaperone and that RcsB positively regulates the acid stress response partly through activation of yfdX expression. Moreover, the phosphorylation status of RcsB may affect the YfdX expression under acidic conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Ácidos/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reguladores , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Fosforilação , Plasmídeos/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genética
2.
Proteomics ; 7(5): 796-803, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17295356

RESUMO

Repeated administration of morphine for treating severe chronic pain may lead to neuroadaptive changes in the spinal cord that are thought to underlie molecular mechanisms of the development of morphine tolerance and physical dependence. Here, we employed a 2-D gel-based proteomic technique to detect the global changes of the spinal cord protein expression in rats that had developed morphine tolerance. Morphine tolerance at the spinal cord level was induced by repeated intrathecal injections of morphine (20 microg/10 microL) twice daily for 5 days and evaluated by measurements of paw withdrawal latencies and maximal possible analgesic effect at day 5. After behavioral tests, the lumbar enlargement segments of spinal cord were harvested and proteins resolved by 2-DE. We found that eight proteins were significantly up-regulated or down-regulated in spinal cord after morphine tolerance development, including proteins involved in targeting and trafficking of the glutamate receptors and opioid receptors, proteins involved in oxidative stress, and cytoskeletal proteins, some of which were confirmed by Western blot analysis. Morphine-induced expressional changes of these proteins in the spinal cord might be involved in the central mechanisms that underlie the development of morphine tolerance. It is very likely that these identified proteins may serve as potential molecular targets for prevention of the development of morphine tolerance and physical dependence.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Morfina/farmacologia , Proteoma/efeitos dos fármacos , Proteômica , Medula Espinal/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Animais , Injeções Espinhais , Masculino , Morfina/administração & dosagem , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA