RESUMO
The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.
RESUMO
The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.
Assuntos
Arabidopsis , Marchantia , Marchantia/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Plantas/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismoRESUMO
Many studies from different model organisms have demonstrated that microtubules are essential for various cellular processes, including cell division, cell morphogenesis, and intracellular trafficking. In interphase plant cells, oriented cortical microtubule arrays are highly characteristic in cells that display various morphologies, such as elongated hypocotyl cells and root cells, jigsaw-puzzled leaf pavement cells, and petal epidermal conical cells. Conical cells represent a specialized epidermal cell type found in the petal epidermis of many flowering plants. It has been suggested that in the model plant Arabidopsis thaliana, the petal adaxial epidermal cells develop from a roughly hemispherical morphology to a conical shape, correlating with the reorientation of cortical microtubules from random to well-ordered circumferential arrays. This chapter presents an overview of the methods available to visualize the microtubule cytoskeleton in living conical cells via confocal microscopy.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Células Epidérmicas/metabolismoRESUMO
Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Katanina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Anisotropia , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Celulose/metabolismo , Proteínas Repressoras/metabolismoRESUMO
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Morfogênese , Plantas/metabolismoRESUMO
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas Repressoras/metabolismo , Transdução de SinaisRESUMO
Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Água/metabolismoRESUMO
During growth and morphogenesis, plant cells respond to mechanical stresses resulting from spatiotemporal changes in the cell wall that bear high internal turgor pressure. Microtubule (MT) arrays are reorganized to align in the direction of maximal tensile stress, presumably reinforcing the local cell wall by guiding the synthesis of cellulose. However, how mechanical forces regulate MT reorganization remains largely unknown. Here, we demonstrate that mechanical signaling that is based on the Catharanthus roseus RLK1-like kinase (CrRLK1L) subfamily receptor kinase FERONIA (FER) regulates the reorganization of cortical MT in cotyledon epidermal pavement cells (PCs) in Arabidopsis. Recessive mutations in FER compromised MT responses to mechanical perturbations, such as single-cell ablation, compression, and isoxaben treatment, in these PCs. These perturbations promoted the activation of ROP6 guanosine triphosphatase (GTPase) that acts directly downstream of FER. Furthermore, defects in the ROP6 signaling pathway negated the reorganization of cortical MTs induced by these stresses. Finally, reduction in highly demethylesterified pectin, which binds the extracellular malectin domains of FER and is required for FER-mediated ROP6 activation, also impacted mechanical induction of cortical MT reorganization. Taken together, our results suggest that the FER-pectin complex senses and/or transduces mechanical forces to regulate MT organization through activating the ROP6 signaling pathway in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Morfogênese , Pectinas/metabolismo , Fosfotransferases/genética , Transdução de Sinais/fisiologiaRESUMO
Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Células HEK293 , Humanos , Luz , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos da radiação , Poliubiquitina/metabolismo , Ligação Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Plântula/efeitos da radiação , Ubiquitinação/efeitos da radiaçãoRESUMO
The microtubule cytoskeleton plays an important role in cell shape and plant development. During the past decades, the ability to use confocal microcopy to observe microtubules in living cells using fluorescent protein fusions has given plant scientists the opportunity to answer outstanding biological questions. Plants contain diverse epidermal cells with distinct morphologies and physiological functions. For example, flowering plants have specialized petal conical cells that likely facilitate functions such as providing grips for bee pollinators. Here, we summarize recent progress on live imaging of the microtubule cytoskeleton in conical cells. Firstly, we present a simple method for live-cell confocal imaging of conical cells, which is suitable for the quantification of the cell geometry. Secondly, we describe a method for observing microtubule organization in conical cells of Arabidopsis thaliana expressing green fluorescent protein (GFP)-tagged α-tubulin 6 (GFP-TUA6). These live imaging approaches are likely to lead to rapid advances in our knowledge of the role of microtubules in conical cell shaping.
Assuntos
Arabidopsis/citologia , Flores/citologia , Imageamento Tridimensional/métodos , Microtúbulos/metabolismo , Células Vegetais/metabolismo , Microscopia ConfocalRESUMO
Proper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.
Assuntos
Ananas/genética , Proteínas de Plantas/genética , Reprodução/genética , Transcriptoma/genética , Sequência de Aminoácidos/genética , Ananas/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Sementes/genéticaRESUMO
The flowers of angiosperm species typically contain specialized conical cells. Although substantial progress has been achieved regarding the mechanisms underlying flower development, little is known about how petal cells achieve final conical shape. Here, we use 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a fluorescent pH indicator for analyzing the apoplastic pH of conical cells in Arabidopsis and show that normal conical cell expansion requires auxin signaling and apoplastic pH changes. By combining imaging analysis and genetic and pharmacological experiments, we demonstrate that apoplastic acidification and alkalization correlate with an increase and decrease in tip sharpening of conical cells, respectively. Initial expansion of conical cells is accompanied by decreased apoplastic pH, which is associated with increased auxin signaling. Decreased auxin levels, transport, or signaling abolishes cell wall acidification and causes reduced tip sharpening and heights of conical cells. These findings provide an insight into apoplastic pH regulation of conical cell expansion.
Assuntos
Arabidopsis/citologia , Forma Celular , Flores/citologia , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Sulfonatos de Arila/metabolismo , Proliferação de Células , Flores/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/farmacologia , FenótipoRESUMO
Megasporogenesis is a key step during ovule development in angiosperms, but the small number and inaccessibility of these cells have hampered molecular and genome-wide studies. Thus, many questions remain regarding the molecular basis of cell specification, differentiation, and development in the female gametophyte. Here, taking advantage of the correlation between spikelet length and ovule development in rice (Oryza sativa), we studied the transcriptome dynamics of young ovules at three stages, the archesporial cell, the megaspore mother cell before meiosis, and the functional megaspore after meiosis, using expression profiling based on RNA sequencing. Our analysis showed that 5,274 genes were preferentially expressed in ovules during megasporogenesis as compared to ovules at the mature female gametophyte stage. Out of these, 958 (18.16%) genes were archesporial cell- and/or megaspore mother cell-preferential genes, and represent a significant enrichment of genes involved in hormone signal transduction and plant pathogen interaction pathways, as well as genes encoding transcription factors. The expression patterns of nine genes that were preferentially expressed in ovules of different developmental stages, including the OsERECTA2 (OsER2) receptor-like kinase gene, were confirmed by in situ hybridization. We further characterized the OsER2 loss-of-function mutant, which had an excessive number of female germline cells and an abnormal female gametophyte, suggesting that OsER2 regulates germline cell specification during megasporogenesis in rice. These results expand our understanding of the molecular control of megasporogenesis in rice and contribute to the functional studies of genes involved in megasporogenesis.
Assuntos
Oryza/metabolismo , Óvulo Vegetal/metabolismo , Análise de Sequência de RNA/métodos , Gametogênese Vegetal/genética , Gametogênese Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hibridização In Situ , Meiose/genética , Meiose/fisiologia , Oryza/genética , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Microtúbulos/genética , Microtúbulos/metabolismo , Morfogênese , Organogênese Vegetal , Arabidopsis/ultraestrutura , Fenótipo , Epiderme Vegetal/fisiologia , Epiderme Vegetal/ultraestruturaRESUMO
Unlike animal cells, plant cells do not possess centrosomes that serve as microtubule organizing centers; how microtubule arrays are organized throughout plant morphogenesis remains poorly understood. We report here that Arabidopsis INCREASED PETAL GROWTH ANISOTROPY 1 (IPGA1), a previously uncharacterized microtubule-associated protein, regulates petal growth and shape by affecting cortical microtubule organization. Through a genetic screen, we showed that IPGA1 loss-of-function mutants displayed a phenotype of longer and narrower petals, as well as increased anisotropic cell expansion of the petal epidermis in the late phases of flower development. Map-based cloning studies revealed that IPGA1 encodes a previously uncharacterized protein that colocalizes with and directly binds to microtubules. IPGA1 plays a negative role in the organization of cortical microtubules into parallel arrays oriented perpendicular to the axis of cell elongation, with the ipga1-1 mutant displaying increased microtubule ordering in petal abaxial epidermal cells. The IPGA1 family is conserved among land plants and its homologs may have evolved to regulate microtubule organization. Taken together, our findings identify IPGA1 as a novel microtubule-associated protein and provide significant insights into IPGA1-mediated microtubule organization and petal growth anisotropy.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Associadas aos Microtúbulos/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Flores/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , MorfogêneseRESUMO
Root hairs are protrusions from root epidermal cells with crucial roles in plant soil interactions. Although much is known about patterning, polarity and tip growth of root hairs, contributions of membrane trafficking to hair initiation remain poorly understood. Here, we demonstrate that the trans-Golgi network-localized YPT-INTERACTING PROTEIN 4a and YPT-INTERACTING PROTEIN 4b (YIP4a/b) contribute to activation and plasma membrane accumulation of Rho-of-plant (ROP) small GTPases during hair initiation, identifying YIP4a/b as central trafficking components in ROP-dependent root hair formation.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Genes de Plantas , Proteínas de Membrana/farmacologia , Raízes de Plantas/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Membrana Celular/fisiologia , Genótipo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Mutação , Fenótipo , Transporte Proteico , Sementes , Rede trans-Golgi/fisiologiaRESUMO
Plants have evolved diverse cell types with distinct sizes, shapes, and functions. For example, most flowering plants contain specialized petal conical epidermal cells that are thought to attract pollinators and influence light capture and reflectance, but the molecular mechanisms controlling conical cell shaping remain unclear. Here, through a genetic screen in Arabidopsis thaliana, we demonstrated that loss-of-function mutations in ANGUSTIFOLIA (AN), which encodes for a homolog of mammalian CtBP/BARs, displayed conical cells phenotype with wider tip angles, correlating with increased accumulation of reactive oxygen species (ROS). We further showed that exogenously supplied ROS generated similar conical cell phenotypes as the an mutants. Moreover, reduced endogenous ROS levels resulted in deceased tip sharpening of conical cells. Furthermore, through enhancer screening, we demonstrated that mutations in katanin (KTN1) enhanced conical cell phenotypes of the an-t1 mutants. Genetic analyses showed that AN acted in parallel with KTN1 to control conical cell shaping. Both increased or decreased ROS levels and mutations in AN suppressed microtubule organization into well-ordered circumferential arrays. We demonstrated that the AN-ROS pathway jointly functioned with KTN1 to modulate microtubule ordering, correlating with the tip sharpening of conical cells. Collectively, our findings revealed a mechanistic insight into ROS homeostasis regulation of microtubule organization and conical cell shaping.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Forma Celular/fisiologia , Proteínas Repressoras/genética , Arabidopsis/fisiologia , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Flores/genética , Flores/metabolismo , Katanina/genética , Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
The physiological functions of epidermal cells are largely determined by their diverse morphologies. Most flowering plants have special conical-shaped petal epidermal cells that are thought to influence light capture and reflectance, and provide pollinator grips, but the molecular mechanisms controlling conical cell shape remain largely unknown. Here, we developed a live-confocal imaging approach to quantify geometric parameters of conical cells in Arabidopsis thaliana (A. thaliana). Through genetic screens, we identified katanin (KTN1) mutants showing a phenotype of decreased tip sharpening of conical cells. Furthermore, we demonstrated that SPIKE1 and Rho of Plants (ROP) GTPases were required for the final shape formation of conical cells, as KTN1 does. Live-cell imaging showed that wild-type cells exhibited random orientation of cortical microtubule arrays at early developmental stages but displayed a well-ordered circumferential orientation of microtubule arrays at later stages. By contrast, loss of KTN1 prevented random microtubule networks from shifting into well-ordered arrays. We further showed that the filamentous actin cap, which is a typical feature of several plant epidermal cell types including root hairs and leaf trichomes, was not observed in the growth apexes of conical cells during cell development. Moreover, our genetic and pharmacological data suggested that microtubules but not actin are required for conical cell shaping. Together, our results provide a novel imaging approach for studying petal conical cell morphogenesis and suggest that the spatio-temporal organization of microtubule arrays plays crucial roles in controlling conical cell shape.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Forma Celular/genética , Flores/genética , Citoesqueleto de Actina/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Proteínas de Ligação ao GTP/genética , Katanina , Microtúbulos/genética , Microtúbulos/ultraestrutura , Proteínas Mutantes/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Tricomas/genética , Tricomas/ultraestruturaRESUMO
Plant organ growth and final shape rely on cell proliferation and, particularly, on cell expansion that largely determines the visible growth of plant organs. Arabidopsis (Arabidopsis thaliana) petals serve as an excellent model for dissecting the coordinated regulation of patterns of cell expansion and organ growth, but the molecular signaling mechanisms underlying this regulation remain largely unknown. Here, we demonstrate that during the late petal development stages, SPIKE1 (SPK1), encoding a guanine nucleotide exchange factor, activates Rho of Plants (ROP) GTPase proteins (ROP2, ROP4, and ROP6) to affect anisotropic expansion of epidermal cells in both petal blades and claws, thereby affecting anisotropic growth of the petal and the final characteristic organ shape. The petals of SPK1 knockdown mutants were significantly longer but narrower than those of the wild type, associated with increased anisotropic expansion of epidermal cells at late development stages. In addition, ROP2, ROP4, and ROP6 are activated by SPK1 to promote the isotropic organization of cortical microtubule arrays and thus inhibit anisotropic growth in the petal. Both knockdown of SPK1 and multiple rop mutants caused highly ordered cortical microtubule arrays that were transversely oriented relative to the axis of cell elongation after development stage 11. Taken together, our results suggest a SPK1-ROP-dependent signaling module that influences anisotropic growth in the petal and defines the final organ shape.