Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Comput Biol Med ; 175: 108368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663351

RESUMO

BACKGROUND: The issue of using deep learning to obtain accurate gross tumor volume (GTV) and metastatic lymph nodes (MLN) segmentation for nasopharyngeal carcinoma (NPC) on heterogeneous magnetic resonance imaging (MRI) images with limited labeling remains unsolved. METHOD: We collected 918 patients with MRI images from three hospitals to develop and validate models and proposed a semi-supervised framework for the fine delineation of multi-center NPC boundaries by integrating uncertainty-based implicit neural representations named SIMN. The framework utilizes the deep mutual learning approach with CNN and Transformer, incorporating dynamic thresholds. Additionally, domain adaptive algorithms are employed to enhance the performance. RESULTS: SIMN predictions have a high overlap ratio with the ground truth. Under the 20 % labeled cases, for the internal test cohorts, the average DSC in GTV and MLN are 0.7981 and 0.7804, respectively; for external test cohort Wu Zhou Red Cross Hospital, the average DSC in GTV and MLN are 0.7217 and 0.7581, respectively; for external test cohorts First People Hospital of Foshan, the average DSC in GTV and MLN are 0.7004 and 0.7692, respectively. No significant differences are found in DSC, HD95, ASD, and Recall for patients with different clinical categories. Moreover, SIMN outperformed existing classical semi-supervised methods. CONCLUSIONS: SIMN showed a highly accurate GTV and MLN segmentation for NPC on multi-center MRI images under Semi-Supervised Learning (SSL), which can easily transfer to other centers without fine-tuning. It suggests that it has the potential to act as a generalized delineation solution for heterogeneous MRI images with limited labels in clinical deployment.


Assuntos
Imageamento por Ressonância Magnética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Imageamento por Ressonância Magnética/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Aprendizado Profundo , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Phys Med Biol ; 69(10)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38593831

RESUMO

Objective. To go beyond the deficiencies of the three conventional multimodal fusion strategies (i.e. input-, feature- and output-level fusion), we propose a bidirectional attention-aware fluid pyramid feature integrated fusion network (BAF-Net) with cross-modal interactions for multimodal medical image diagnosis and prognosis.Approach. BAF-Net is composed of two identical branches to preserve the unimodal features and one bidirectional attention-aware distillation stream to progressively assimilate cross-modal complements and to learn supplementary features in both bottom-up and top-down processes. Fluid pyramid connections were adopted to integrate the hierarchical features at different levels of the network, and channel-wise attention modules were exploited to mitigate cross-modal cross-level incompatibility. Furthermore, depth-wise separable convolution was introduced to fuse the cross-modal cross-level features to alleviate the increase in parameters to a great extent. The generalization abilities of BAF-Net were evaluated in terms of two clinical tasks: (1) an in-house PET-CT dataset with 174 patients for differentiation between lung cancer and pulmonary tuberculosis. (2) A public multicenter PET-CT head and neck cancer dataset with 800 patients from nine centers for overall survival prediction.Main results. On the LC-PTB dataset, improved performance was found in BAF-Net (AUC = 0.7342) compared with input-level fusion model (AUC = 0.6825;p< 0.05), feature-level fusion model (AUC = 0.6968;p= 0.0547), output-level fusion model (AUC = 0.7011;p< 0.05). On the H&N cancer dataset, BAF-Net (C-index = 0.7241) outperformed the input-, feature-, and output-level fusion model, with 2.95%, 3.77%, and 1.52% increments of C-index (p= 0.3336, 0.0479 and 0.2911, respectively). The ablation experiments demonstrated the effectiveness of all the designed modules regarding all the evaluated metrics in both datasets.Significance. Extensive experiments on two datasets demonstrated better performance and robustness of BAF-Net than three conventional fusion strategies and PET or CT unimodal network in terms of diagnosis and prognosis.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Prognóstico , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Multimodal , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
3.
Artif Intell Med ; 146: 102720, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042604

RESUMO

Automatic segmentation of the three substructures of glomerular filtration barrier (GFB) in transmission electron microscopy (TEM) images holds immense potential for aiding pathologists in renal disease diagnosis. However, the labor-intensive nature of manual annotations limits the training data for a fully-supervised deep learning model. Addressing this, our study harnesses self-supervised representation learning (SSRL) to utilize vast unlabeled data and mitigate annotation scarcity. Our innovation, GCLR, is a hybrid pixel-level pretext task tailored for GFB segmentation, integrating two subtasks: global clustering (GC) and local restoration (LR). GC captures the overall GFB by learning global context representations, while LR refines three substructures by learning local detail representations. Experiments on 18,928 unlabeled glomerular TEM images for self-supervised pre-training and 311 labeled ones for fine-tuning demonstrate that our proposed GCLR obtains the state-of-the-art segmentation results for all three substructures of GFB with the Dice similarity coefficient of 86.56 ± 0.16%, 75.56 ± 0.36%, and 79.41 ± 0.16%, respectively, compared with other representative self-supervised pretext tasks. Our proposed GCLR also outperforms the fully-supervised pre-training methods based on the three large-scale public datasets - MitoEM, COCO, and ImageNet - with less training data and time.


Assuntos
Barreira de Filtração Glomerular , Glomérulos Renais , Análise por Conglomerados , Microscopia Eletrônica de Transmissão , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
4.
Comput Methods Programs Biomed ; 230: 107341, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682111

RESUMO

BACKGROUND AND OBJECTIVE: Accurate risk stratification is crucial for enabling personalized treatment for head and neck cancer (HNC). Current PET/CT image-based prognostic methods include radiomics analysis and convolutional neural network (CNN), while extracting radiomics or deep features in grid Euclidean space has inherent limitations for risk stratification. Here, we propose a functional-structural sub-region graph convolutional network (FSGCN) for accurate risk stratification of HNC. METHODS: This study collected 642 patients from 8 different centers in The Cancer Imaging Archive (TCIA), 507 patients from 5 centers were used for training, and 135 patients from 3 centers were used for testing. The tumor was first clustered into multiple sub-regions by using PET and CT voxel information, and radiomics features were extracted from each sub-region to characterize its functional and structural information, a graph was then constructed to format the relationship/difference among different sub-regions in non-Euclidean space for each patient, followed by a residual gated graph convolutional network, the prognostic score was finally generated to predict the progression-free survival (PFS). RESULTS: In the testing cohort, compared with radiomics or FSGCN or clinical model alone, the model PETCTFea_CTROI + Cli that integrates FSGCN prognostic score and clinical parameter achieved the highest C-index and AUC of 0.767 (95% CI: 0.759-0.774) and 0.781 (95% CI: 0.774-0.788), respectively for PFS prediction. Besides, it also showed good prognostic performance on the secondary endpoints OS, RFS, and MFS in the testing cohort, with C-index of 0.786 (95% CI: 0.778-0.795), 0.775 (95% CI: 0.767-0.782) and 0.781 (95% CI: 0.772-0.789), respectively. CONCLUSIONS: The proposed FSGCN can better capture the metabolic or anatomic difference/interaction among sub-regions of the whole tumor imaged with PET/CT. Extensive multi-center experiments demonstrated its capability and generalization of prognosis prediction in HNC over conventional radiomics analysis.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Prognóstico , Redes Neurais de Computação
5.
Sensors (Basel) ; 16(3)2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978359

RESUMO

The scientific and effective prediction of drawbar pull is of great importance in the evaluation of military vehicle trafficability. Nevertheless, the existing prediction models have demonstrated lots of inherent limitations. In this framework, a multiple-kernel relevance vector machine model (MkRVM) including Gaussian kernel and polynomial kernel is proposed to predict drawbar pull. Nonlinear decreasing inertia weight particle swarm optimization (NDIWPSO) is employed for parameter optimization. As the relations between drawbar pull and its influencing factors have not been tested on real vehicles, a series of experimental analyses based on real vehicle test data are done to confirm the effective influencing factors. A dynamic testing system is applied to conduct field tests and gain required test data. Gaussian kernel RVM, polynomial kernel RVM, support vector machine (SVM) and generalized regression neural network (GRNN) are also used to compare with the MkRVM model. The results indicate that the MkRVM model is a preferable model in this case. Finally, the proposed novel model is compared to the traditional prediction model of drawbar pull. The results show that the MkRVM model significantly improves the prediction accuracy. A great potential of improved RVM is indicated in further research of wheel-soil interactions.

6.
PLoS One ; 10(2): e0118249, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723492

RESUMO

Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.


Assuntos
Aceleração , Veículos Automotores , Transdutores , Torque
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(9): 2478-82, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24369656

RESUMO

The spectrometric oil analysis(SOA) is an important technique for machine state monitoring, fault diagnosis and prognosis, and SOA based remaining useful life(RUL) prediction has an advantage of finding out the optimal maintenance strategy for machine system. Because the complexity of machine system, its health state degradation process can't be simply characterized by linear model, while particle filtering(PF) possesses obvious advantages over traditional Kalman filtering for dealing nonlinear and non-Gaussian system, the PF approach was applied to state forecasting by SOA, and the RUL prediction technique based on SOA and PF algorithm is proposed. In the prediction model, according to the estimating result of system's posterior probability, its prior probability distribution is realized, and the multi-step ahead prediction model based on PF algorithm is established. Finally, the practical SOA data of some engine was analyzed and forecasted by the above method, and the forecasting result was compared with that of traditional Kalman filtering method. The result fully shows the superiority and effectivity of the

8.
Zhongguo Zhen Jiu ; 32(2): 133-4, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22493917
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA