Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173313, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761952

RESUMO

Taiwan, identified as pivotal in the Asian drug trafficking chain, has been experiencing a surge in illicit drug-related issues. Wastewater-based epidemiology (WBE) has emerged as a promising approach for comprehensive evaluation of actual illicit drug usage. This study presents the first WBE investigation of illicit drug consumption in Taiwan based on the analysis of wastewater from four wastewater treatment plants (WWTPs) in the Taipei metropolitan area. Additionally, it demonstrates a high correlation between the amounts of illicit drugs seized and influent concentrations over an extended period of time. The reliability of solid-phase extraction and analysis via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated for 16 illicit drugs (methamphetamine, ketamine, cocaine, codeine, methadone, morphine, meperidine, fentanyl, sufentanil, para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), 3,4-methylenedioxymethamphetamine (MDMA), cathinone, methcathinone, mephedrone (MEPH), and 4-methylethcathinone (4-MEC)). Methamphetamine, ketamine, and 4-MEC were consistently detected in all wastewater samples, underscoring their prevalence in the Taipei metropolitan area. Biochemical oxygen demand (BOD) and ammonia nitrogen (ammonia N) were employed to reduce uncertainty in estimations of population size during back-calculation of illicit drug consumption. The results indicate that methamphetamine was the most consumed drug (175-740 mg day-1 1000 people-1), followed by ketamine (22-280 mg day-1 1000 people-1). In addition, urban-related WWTPs exhibited higher consumption of methamphetamine and ketamine than did the suburban-related WWTP, indicating distinct illicit drug usage patterns between suburban and urban regions. Moreover, an examination of temporal trends in wastewater from the Dihua WWTP revealed a persistent predominance of ketamine and methamphetamine, consistent with statistical data pertaining to seizure quantities and urine test results. The study provides encouraging insight into spatial and temporal variations in illicit drug usage in the Taipei metropolitan area, emphasizing the complementary role of WBE in understanding trends in illicit drug abuse.


Assuntos
Drogas Ilícitas , Águas Residuárias , Poluentes Químicos da Água , Taiwan/epidemiologia , Águas Residuárias/química , Drogas Ilícitas/análise , Poluentes Químicos da Água/análise , Detecção do Abuso de Substâncias/métodos , Humanos , Monitoramento Ambiental , Espectrometria de Massas em Tandem , Cidades
2.
Chemosphere ; 357: 142039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621488

RESUMO

The coexistence of free chlorine and bromide under sunlight irradiation (sunlight/FC with Br-) is unavoidable in outdoor seawater swimming pools, and the formation of brominated disinfection byproducts could act more harmful than chlorinated disinfection byproducts. In this study, benzotriazole was selected as a model compound to investigate the degradation rate and the subsequent formation of disinfection byproducts via sunlight/FC with Br- process. The rate constants for the degradation of benzotriazole under pseudo first order conditions in sunlight/FC with Br- and sunlight/FC are 2.3 ± 0.07 × 10-1 min-1 and 6.0 ± 0.7 × 10-2 min-1, respectively. The enhanced degradation of benzotriazole can be ascribed to the generation of HO•, bromine species, and reactive halogen species (RHS) during sunlight/FC with Br-. Despite the fact that sunlight/FC with Br- process enhanced benzotriazole degradation, the reaction results in increasing tribromomethane (TBM) formation. A high concentration (37.8 µg/L) of TBM was detected in the sunlight/FC with Br-, which was due to the reaction of RHS. The degradation of benzotriazole was notably influenced by the pH value (pH 4 - 11), the concentration of bromide (0 - 2 mM), and free chlorine (1 - 6 mg/L). Furthermore, the concentration of TBM increased when the free chlorine concentrations increased, implying the formation potential of harmful TBM in chlorinated seawater swimming pools.


Assuntos
Brometos , Cloro , Luz Solar , Triazóis , Poluentes Químicos da Água , Triazóis/química , Brometos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cloro/química , Desinfecção , Trialometanos/química , Água do Mar/química , Desinfetantes/química , Desinfetantes/análise
3.
J Hazard Mater ; 465: 133031, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38008053

RESUMO

Urine source separation, as an innovative concept for the reuse of microlevel nutrients in human urine, has drawn increasing attention recently. Consequently, removing coexisting pharmaceuticals in urine is necessary for further reuse. This study is the first to apply the solar-driven persulfate process (Solar/PS) to the investigation of cephradine (CFD) and caffeine (CAF) degradation in synthetic human urine. The results showed that significantly more degradation of CFD and CAF occurs with the Solar/PS process than with persulfate oxidation and direct sunlight photolysis, respectively. The generated reactive species ·OH, SO4·-, O2·- and 1O2 were identified in the Solar/PS process. While SO4·- played a dominant role at pH 6, it played a minor role at pH 9 due to the lower amount generated under alkaline conditions. The presence of chloride and ammonia negatively impacted the photodegradation of both compounds. In contrast, bicarbonate exhibited no effect on CAF but enhanced CFD degradation owing to its amino-acid-like structure, which has a higher reactivity toward CO3·-. Although total organic carbon (TOC) was partially mineralized after 6 h of operation, no Microtox® toxicity was observed.


Assuntos
Cefradina , Poluentes Químicos da Água , Humanos , Cafeína , Luz Solar , Fotólise , Oxirredução , Poluentes Químicos da Água/química , Sulfatos/química
4.
Chemosphere ; 309(Pt 1): 136677, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191762

RESUMO

Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are the most commonly used UV stabilizers and recalcitrant contaminants that are widely distributed in aquatic environments. The novelty of this study was to investigate the role of RCSs in the enhanced degradation of BT and 5-MeBT during the sunlight/free chlorine process. The results showed that sunlight/free chlorine could enhance the degradation of BT and 5-MeBT compared with that obtained with sunlight irradiation and chlorination alone, and this process was well described by pseudo-first-order kinetics. The degradation rate constants of BT and 5-MeBT during sunlight/free chlorine treatment at pH 7 were 0.094 ± 0.001 min-1 and 0.134 ± 0.002 min-1, respectively. The degradation rates further increased with increases in the chlorine dosage and under alkaline conditions (3.818 ± 0.243 min-1 for BT and 7.754 ± 0.716 min-1 for 5-MeBT at pH 9). The enhanced removal obtained during the sunlight/free chlorine process could be attributed to the generation of HO• and reactive chlorine species (RCSs), such as Cl• and ClO•. Under alkaline conditions, RCSs were the dominant reactive species, and their contribution increased from 21.2% to 98.7% with increases in the pH from 7 to 9; this phenomenon was due to changes in free chlorine and BT speciation. Radical scavenging tests further verified that BT was mainly decomposed by ClO•, and ClO• showed high reactivity toward deprotonated BT through second-order rate constant estimation. A byproduct analysis demonstrated that BT underwent hydroxylation and chlorine substitution, and a high yield of 1-chlorobenzotriazole (1-ClBT) formation was observed. Even though the sunlight/free chlorine process resulted in a low level of mineralization, no Microtox® toxicity was detected in the treated solutions. Briefly, the significant contribution of ClO• to BT removal under alkaline conditions implies that sunlight/free chlorine could be utilized in a broader range of treatment conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Luz Solar , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Cloretos , Oxirredução
5.
Chemosphere ; 290: 133352, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34922962

RESUMO

Microplastics (MPs) have received much attention in recent years because of their continuous photoaging process in aquatic environments. However, little research has been conducted on the photochemistry of aged microplastics and the associated effects on coexisting pharmaceuticals. This study investigated the photodegradation of cimetidine via aged polystyrene microplastics (PS-MPs) with different aging times (0-7 d) under simulated sunlight irradiation (700 W/m2). PS-MPs with 5 d of aging time resulted in much faster cimetidine degradation (>99%) after 2 h of irradiation than pristine PS-MPs (<8%). The enhanced photodegradation of cimetidine by aged PS-MPs was related to the increase in chromophoric oxygenated groups (CO, C-O) followed by redshifted absorbance through the photoaging process, which induced the formation of the environmentally persistent free radicals (EPFRs) OH, 1O2 and 3PS*. However, only 1O2 and 3PS* contributed to enhanced cimetidine photodegradation, with 1O2 playing a more important role in our case. This work also demonstrated that other compounds that are susceptible to indirect photolysis, such as codeine and morphine, are likewise significantly degraded under irradiation in the presence of aged PS-MPs. Although previous studies have reported how MPs can increase the persistence of contaminants, this study demonstrates that MPs can serve as photosensitizers and alter the fate of coexisting pharmaceuticals in aquatic environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Cimetidina , Fotólise , Fármacos Fotossensibilizantes , Plásticos , Poliestirenos
6.
Chemosphere ; 271: 129507, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445022

RESUMO

Algae is able to accelerate the photodegradation rate of contaminants under sunlight irradiation, and this process can be attributed to algal substances, namely, intracellular organic matter (IOM) and extracellular organic matter (EOM). This study aimed to investigate the efficiencies and mechanisms of the photodegradation of three pharmaceuticals - acetaminophen (ACE), codeine (COD) and cephradine (CFD) - in the presence of Chlorella vulgaris and its algal substances. The result shows that a much higher photodegradation rate of acetaminophen was obtained in the presence of IOM (kobs = 0.250 hr-1) than in the presence of EOM (kobs = 0.060 hr-1). The photodegradation mechanisms of acetaminophen were demonstrated and verified by scavenger experiments and probe tests. The major reactive species for acetaminophen photodegradation was triplet-state IOM (3IOM∗), which contributed 93.52% of the photodegradation, while ⋅OH was the secondary contributor (5.60%), with 1O2 contributing the least (0.88%). Chlorella vulgaris also effectively enhanced the photodegradation of codeine and cephradine. However, the photodegradation behaviors of codeine and cephradine in the presence of algal substances were different from those of acetaminophen, indicating that the photodegradation mechanisms might depend on the type of compound. This study not only demonstrates the effectiveness of algal substances in the photodegradation of acetaminophen, codeine and cephradine under sunlight irradiation but also provides a comprehensive study on the photodegradation mechanisms of acetaminophen in the presence of algal substances.


Assuntos
Chlorella vulgaris , Acetaminofen , Fotólise
7.
J Hazard Mater ; 287: 133-41, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25644030

RESUMO

This study investigated the TiO2 photocatalytic degradation and transformation of the oxazaphosphorines ifosfamide (IFO), cyclophosphamide (CP) and trofosfamide (TRO). Under the optimum conditions of TiO2=100mg/L, IFO=100µg/L and solution pH=5.5, IFO was completely removed within 10min (k=0.433min(-1)). The results indicated that OHfree radicals generated by valence holes in the bulk solution were the predominant species for the degradation of IFO. At higher initial concentrations of oxazaphosphorines (20mg/L), >50% of TOC remained after 6h of reaction time, indicating that parent compounds were transformed to byproducts, which exhibit higher Microtox acute toxicities; chlorinated byproducts were likely the source of toxicity. Photocatalytic degradation pathways of the three oxazaphosphorines were proposed. IFO, CP and TRO follow very similar pathways and bond-breaking processes: ketonization and breaking of the CCl bond, the PN bond and the CN bond (N-dechloroethylation). Chloride (Cl(-)) release is likely the first and primary step in the decomposition process. Several of the identified byproducts were also metabolites, which implies that photocatalytic oxidation proceeds through pathways that are similar to metabolic pathways.


Assuntos
Ciclofosfamida/química , Fotólise , Titânio/química , Poluentes Químicos da Água/química , Ciclofosfamida/efeitos da radiação , Ciclofosfamida/toxicidade , Cinética , Oxirredução , Testes de Toxicidade , Raios Ultravioleta , Vibrio , Águas Residuárias/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade
8.
Water Res ; 48: 559-68, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24200004

RESUMO

Cytostatic drugs are a class of pharmaceuticals that are increasingly used in cancer therapies; 5-fluorouracil is one of the most commonly used cytostatic (antineoplastic) drugs in the world. This study applied photocatalytic oxidation to remove 5-fluorouracil. Degussa P25 showed a higher photocatalytic degradation efficiency for 5-fluorouracil removal than Aldrich TiO2 and ZnO. Under optimal conditions (20 mg L(-1) TiO2 at pH 5.8), 200 µg L(-1) 5-fluorouracil can be removed within 2 h (k = 0.0375 min(-1)). 5-fluorouracil was found to be decomposed by near-surface OH free radicals produced from valence holes (hvb(+)). At a relatively high concentration, 5-fluorouracil (27.6 mg L(-1)) is >99.9% removed within 4 h by 300 mg L(-1) Degussa P25, while 24 h is required to reach complete mineralization with 96.7% fluoride recovery. Cyclophosphamide is another widely used cancer drug that follows a similar decomposition pathway. Cyclophosphamide (27.6 mg L(-1)) was also >99.9% eliminated within 4 h, but dechlorination and mineralization reached only 79.9% and 55.1%, respectively, after 16 h of irradiation. Together with the results for Microtox(®), it is suggested that the oxidation products of cyclophosphamide are even more recalcitrant and toxic. For engineering practices, despite the fact that photocatalytic oxidation can rapidly remove target antineoplastic, it is also important to further evaluate the treatment efficiency of the photoproducts.


Assuntos
Ciclofosfamida/química , Fluoruracila/química , Titânio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Processos Fotoquímicos
9.
Water Sci Technol ; 62(10): 2450-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21076233

RESUMO

Pharmaceuticals and personal care products (PPCPs) constitute a class of chemicals of emerging concern due to the potential risks they pose to organisms and the environment, even at low concentrations (ng/L). Recent studies have found that PPCPs are not efficiently removed in secondary wastewater treatment plants (WWTPs). This study has: (1) simultaneously investigated the occurrence of sixty-one PPCPs using solid phase extraction and high-performance liquid chromatography-tandem mass spectrometry, (2) evaluated removal efficiencies of target PPCPs in six WWTPs that discharge effluents into major Taiwanese rivers, and lastly (3) examined matrix interference during analysis of target PPCPs in water samples. The twenty target PPCPs were chosen for their high detection frequencies, high influent concentrations, and stability during wastewater treatment processes. Caffeine and acetaminophen were detected at the highest concentrations (as high as 24,467 and 33,400 ng/L) and were effectively removed (both >96%); other PPCPs were detected in the high ng/L range but were not effectively removed. Matrix interference (by ion suppression or enhancement) during the analysis resulted in underestimation of the removal efficiencies of erythromycin-H(2)O, cefazolin, clarithromycin, ibuprofen, diclofenac, clofibric acid and gemfibrozil.


Assuntos
Cosméticos/química , Preparações Farmacêuticas/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Água/química , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA