Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402373, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109957

RESUMO

Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported. A magnet-screw mechanism in a fluidic channel to function as a piston pump, alongside a flexible magnetic valve designed to open and close the fluidic channel, is proposed. The mechanisms are showcased by storing and releasing of liquid up to 52 µL in a dental implant. The liquid cargos are delivered directly to the implant-bone interface, a region traditionally difficult to access. On-demand liquid delivery is further showed by a metal implant inside both dental phantoms and porcine jawbones. The mechanisms are promising for controllable liquid release after implant placement with minimal invasion, paving the way for implantable devices that enable long-term and targeted delivery of therapeutic agents in various bioengineering applications.

2.
Sci Adv ; 10(35): eadp2758, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39196937

RESUMO

Sampling liquids in small and confined spaces to retrieve chemicals and microbiomes could enable minimally invasive monitoring human physiological conditions for understanding disease development and allowing early screening. However, existing tools are either invasive or too large for sampling liquids in tortuous and narrow spaces. Here we report a fundamental liquid sampling mechanism that enables millimeter-scale soft capsules for sampling liquids in confined spaces. The miniature capsule is enabled by flexible magnetic valves and superabsorbent polymer, fully wirelessly controlled for on-demand fluid sampling. A group of miniature capsules could navigate in fluid-filled and confined spaces safely using a rolling locomotion. The integration of on-demand triggering, sampling, and sealing mechanism and the agile group locomotion allows us to demonstrate precise control of the soft capsules, navigating and sampling body fluids in a phantom and animal organ ex vivo, guided by ultrasound and x-ray medical imaging. The proposed mechanism and wirelessly controlled devices spur the next-generation technologies for minimally invasive disease diagnosis.


Assuntos
Cápsulas , Animais , Cápsulas/química , Humanos , Tecnologia sem Fio , Imagens de Fantasmas , Polímeros/química , Líquidos Corporais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA