Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Adv Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089617

RESUMO

BACKGROUND: Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW: This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW: CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.

2.
Future Med Chem ; 16(12): 1239-1254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989990

RESUMO

Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.


[Box: see text].


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Tiofenos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Estrutura Molecular
3.
Stem Cell Res Ther ; 15(1): 143, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764049

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS: SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS: For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION: Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.


Assuntos
Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Neuralgia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Exossomos/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Ratos , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Locomoção , Esponja de Gelatina Absorvível , Cordão Umbilical/citologia
4.
Polymers (Basel) ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794581

RESUMO

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

5.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006102

RESUMO

Hydrogels' exceptional mechanical strength and skin-adhesion characteristics offer significant advantages for various applications, particularly in the fields of tissue adhesion and wearable sensors. Herein, we incorporated a combination of metal-coordination and hydrogen-bonding forces in the design of stretchable and adhesive hydrogels. We synthesized four hydrogels, namely PAID-0, PAID-1, PAID-2, and PAID-3, consisting of acrylamide (AAM), N,N'-methylene-bis-acrylamide (MBA), and methacrylic-modified dopamine (DA). The impact of different ratios of iron (III) ions to DA on each hydrogel's performance was investigated. Our results demonstrate that the incorporation of iron-dopamine complexes significantly enhances the mechanical strength of the hydrogel. Interestingly, as the DA content increased, we observed a continuous and substantial improvement in both the stretchability and skin adhesiveness of the hydrogel. Among the hydrogels tested, PAID-3, which exhibited optimal mechanical properties, was selected for adhesion testing on various materials. Impressively, PAID-3 demonstrated excellent adhesion to diverse materials and, combined with the low cytotoxicity of PAID hydrogel, holds great promise as an innovative option for biomedical engineering applications.

6.
ACS Nano ; 17(19): 19033-19051, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737568

RESUMO

Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.

7.
ACS Nano ; 17(12): 11805-11816, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294326

RESUMO

Thermogel is an injectable biomaterial that functions at body temperatures due to the ease of the sol-to-gel transition. However, most conventional physically cross-linked thermogels generally have relatively low stiffness, which limits various biomedical applications, particularly for stem-cell-based studies. While chemical cross-linking through double-network (DN) structures can increase the stiffness of the hydrogel, they generally lack injectable and thermoresponsive properties due to strong covalent bonds between molecules. To address this challenge, we have developed a temperature-induced nanostructure transition (TINT) system for preparing physical DN supramolecular hydrogels. These hydrogels possess injectable, thermoreversible characteristics and relatively high storage modulus (G'), which increases ∼14-fold from 20 to 37 °C (body temperature). Our bottom-up strategy is based on the co-assembly of aromatic peptide (Ben-FF) and poly(ethylene glycol) (PEG) to form a thermogel at 37 °C through a nanofiber dissociation pathway that differs from the well-known micelle aggregation or polymer shrinkage mechanisms. Peptide molecules form helical packing and weak, noncovalent interactions with PEG, resulting in co-assembled metastable nanofibers. Thermal perturbation initiates lateral dissociation of nanofibers into extensively cross-linked DN nanostructures and subsequent hydrogelation (ΔG = -13.32 kJ/mol). The TINT hydrogel is nontoxic to human mesenchymal stem cells and supports enhanced cell adhesion, suggesting the potential of this strategy in the applications of tissue engineering and regenerative medicine.


Assuntos
Nanoestruturas , Água , Humanos , Temperatura , Hidrogéis/química , Polietilenoglicóis/química , Peptídeos/química
8.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797799

RESUMO

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

9.
Bioconjug Chem ; 34(3): 562-571, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36847641

RESUMO

We report a new peptide-based urchin-shaped structure prepared through two-step self-assembly of tetraphenylethylene-diserine (TPE-SS). Hydrogelation generated nanobelts through the first stage of self-assembly of TPE-SS; these nanobelts further transformed on silicon wafers into urchin-like microstructures featuring nanosized spines. The presence of the TPE moiety in the hydrogelator resulted in aggregation-induced emission characteristics both in the solution and in the gel phases. TPE-SS has the lowest molecular weight of any TPE-capped hydrogelator with ß-sheet-like structures under physiological pH. This new design strategy appears to be useful for generating three-dimensional self-assembled microstructures and multifunctional biomaterials. We found that TPE-SS is biocompatible with human mesenchymal stem cells and breast cancer cells, making them potential applications in tissue engineering and biomedical research.


Assuntos
Estilbenos , Humanos , Estilbenos/química , Materiais Biocompatíveis
10.
Anticancer Res ; 43(3): 1167-1173, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854527

RESUMO

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC) is one of the deadliest cancers, with approximately ~500,000 new diagnosed cases and 145,000 deaths worldwide, per year. The incidence of new cases continues to increase in developing countries. This study aimed to investigate the effect of hinokitiol on cell viability in OSCC cells. MATERIALS AND METHODS: The anticancer effect and mechanism of action of hinokitiol in OSCC cells were analyzed by cell viability assays and cell cycle analysis using flow cytometry, while apoptosis and autophagy-related protein expression was measured using western blot. RESULTS: The results showed that hinokitiol concentration-dependently reduced the viability of SCC4 and SCC25 cells by downregulating the levels of cell-cycle mediators, such as cyclin B1, cyclin D1 and cyclin-dependent kinase-1 (CDK1). Furthermore, hinokitiol promoted apoptosis in SCC25 cells based on the presence of active cleaved caspase-3. Hinokitiol also induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and the expression of the sequestosome-1 (p62/SQSTM). CONCLUSION: Hinokitiol exhibits anti-proliferation activity and has pro-apoptotic effects on OSCC cell lines.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Apoptose , Autofagia , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807362

RESUMO

Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.


Assuntos
Laminina , Fragmentos de Peptídeos , Humanos , Hidrogéis/química , Laminina/química , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/farmacologia
12.
RSC Adv ; 12(22): 14315-14320, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558843

RESUMO

Hydrogels are a class of biomaterials used in the field of tissue engineering and drug delivery. Many tissue engineering applications depend on the material properties of hydrogel scaffolds, such as mechanical stiffness, pore size, and interconnectivity. In this work, we describe the synthesis of peptide/polymer hybrid double-network (DN) hydrogels composed of supramolecular and covalent polymers. The DN hydrogels were prepared by combining the self-assembled pentafluorobenzyl diphenylalanyl aspartic acid (PFB-FFD) tripeptide for the first network and the polymeric PNIPAM-PEGDA copolymer for the second network. During this process, self-assembled peptide nanostructures are cross-linked to the polyacrylamide group in the polymer network through non-covalent interactions. The PNIPAM-PEGDA:PFB-FFD hydrogel exhibited higher mechanical stiffness (G' ∼2 kPa) than the PNIPAM-PEGDA copolymer. Moreover, PNIPAM-PEGDA:PFB-FFD hydrogel shows a decrease in pore size (∼1.2 µm) compared to the original copolymer (∼5.2 µm), with the structural framework of highly interconnected fibrous peptide network. The mechanical stiffness of hydrogels was systematically investigated by rheological analysis in response to various variables, including UV exposure time, concentration of peptides, and amino acid functionalization. Modulating the time of UV irradiation resulted in PNIPAM-PEGDA:PFB-FFD hydrogels with a four-fold increase in stiffness. The influence of amino acid side chains and terminal charge of peptides on the strength of DN hydrogels was also investigated using pentafluorobenzyl diphenylalanyl lysine (PFB-FFK). Interestingly, PFB-FFK, which has an amine group on the side chain, does not exhibit the DN structures. The mechanical properties and pore sizes of PNIPAM-PEGDA:PFB-FFK hydrogel were very similar to those of the PNIPAM-PEGDA copolymer due to poor cross-linking. The biocompatibility of the hydrogel materials was tested with the hMSC cell line using the MTT method, and the results indicate that the materials are non-toxic and potentially useful for biological applications.

13.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948144

RESUMO

Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.


Assuntos
Axônios , Exossomos/transplante , Traumatismos dos Nervos Periféricos , Impressão Tridimensional , Nervo Isquiático , Alicerces Teciduais/química , Animais , Axônios/metabolismo , Axônios/patologia , Humanos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
14.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683284

RESUMO

Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Endossomos/metabolismo , Endossomos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Transporte Biológico/fisiologia , Morte Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Endossomos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação/genética , Fenótipo , Densidade Pós-Sináptica/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
15.
J Microbiol Immunol Infect ; 54(5): 971-978, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33632621

RESUMO

BACKGROUND: The antiviral resistance of cytomegalovirus (CMV) infections is associated with mutations in the CMV UL54 and UL97 gene regions and is a serious problem in immunocompromised patients. However, the molecular epidemiology of UL54 and UL97 in Taiwan is unclear. METHODS: We conducted a retrospective study of patients with CMV infections between January and December 2016 in two tertiary hospitals, one regional hospital in Taiwan. CMV DNAemia was confirmed by elevated CMV DNA titers. Then the regions of the UL54 and UL97 mutations were amplified by PCR and sequenced. RESULTS: Of 729 patients with CMV syndrome, 112 CMV DNAemia patients were enrolled. Twelve novel variants in UL54 (P342S, S384F, K434R, S673F, T754M, R778H, C814S, M827I, G878E, S880L, E888K, and S976N) and one novel variant in UL97 (M615T) were discovered. UL97 antiviral resistance mutations (L595S, M460I, and M460V) were found in four patients (3.6%). In the drug resistance strains, the mutation events occurred after 83-150 days of therapy, and drug resistance was also observed in these patients. The following high frequency variants were observed: D605E in UL97 and A885T, N898D, V355A, N685S, and A688V in UL54. CONCLUSION: The results demonstrate that the positive rate of CMV DNAemia was 15.3% (112/729) among the patients with clinical CMV infection symptoms. The proportion of antiviral resistance CMV strains within CMV DNAemia patients was 3.6%. With the information of polymorphism incidence in the UL54 and UL97 patients from our study, determination of the genetic profile of UL54 and UL97 among immunocompromised populations with refractory CMV infection is recommended.


Assuntos
Infecções por Citomegalovirus/epidemiologia , Citomegalovirus/genética , DNA Polimerase Dirigida por DNA/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Virais/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/uso terapêutico , Criança , Pré-Escolar , Infecções por Citomegalovirus/tratamento farmacológico , DNA Viral/sangue , DNA Viral/genética , Farmacorresistência Viral/genética , Feminino , Ganciclovir/uso terapêutico , Genótipo , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Mutação , Prevalência , Estudos Retrospectivos , Taiwan/epidemiologia , Adulto Jovem
16.
J Mater Chem B ; 9(6): 1676-1685, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33491723

RESUMO

N-Cadherin is a transmembrane glycoprotein that plays a crucial role in the condensation of mesenchymal cells by enhancing cell-cell interactions during the process of chondrogenesis. The biophysical and biochemical signals can incite enhanced cell-cell contact which ultimately determines the fate of stem cells. The role of cadherin mimetic peptides on the differentiation of mesenchymal stem cells is obscure and must be explored in greater detail. In this study, we designed and synthesized a series of bioactive peptide sequences that mimic the EC-1 domain of the cadherin peptide sequence His-Ala-Val (HAV) motif. These peptide hydrogelators can self-assemble into stable supramolecular nanofibrous hydrogels at physiological pH in the presence of Fmoc-diphenylalanine (2) with tunable mechanical stiffness. Human mesenchymal stem cells (3A6) were encapsulated in N-cadherin mimetic peptide hydrogels to evaluate their role in stem cell differentiation and chondrogenesis. The results suggested that these peptide hydrogels are nontoxic to 3A6 cells and promoted chondrogenesis. Interestingly, 3A6 cells exposed to Fmoc-GGHAVDI (1d) peptide solution showed an enhanced expression level of chondrogenic specific marker collagen-II (Col-II) in comparison with other peptide sequences. In contrast, when 3A6 cells were encapsulated in the hydrogel blend (2/1c), the peptide sequence with flanking amino acid serine exhibited greater material stiffness with enhanced glycosaminoglycan (GAG) distribution and high expression levels of chondrogenic specific markers for the cartilage-specific matrix. This suggests that substrate stiffness and peptide sequences can influence stem cell differentiation. The hydrogel with the HAV motif with greater substrate stiffness (2/1c) can promote the chondrogenic differentiation of human mesenchymal stem cells which can be a promising candidate for 3D cell culture and stem cell-based cartilage regeneration therapies.


Assuntos
Condrogênese/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Peptídeos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Propriedades de Superfície
17.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300871

RESUMO

Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila , Retroalimentação Fisiológica/fisiologia , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia
18.
Soft Matter ; 16(44): 10143-10150, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206107

RESUMO

A series of FFK tripeptides capped with phenylacetic acid of various fluoro-substitutions at the N-terminus has been synthesized and examined for self-assembly under aqueous conditions. The material properties of the FFK tripeptides dramatically changed from precipitate to hydrogel phase upon increasing the number of fluorine atoms. Peptides linked with benzyl (B-FFK) or monofluoro-benzyl (MFB-FFK) groups rapidly form solid precipitates under physiological pH conditions. The trifluoro-decorated compound (TFB-FFK) self-assembled into a metastable hydrogel which slowly transformed into a solid precipitate upon standing. A stable hydrogel formation was noticed in the case of the pentafluorobenzyl-diphenylalanyllysine (PFB-FFK) compound. TEM analysis indicates that the PFB-FFK peptide assembled into twisted nanofibril structures, which are predominantly stabilized by strong quadrupole π-stacking interactions and electrostatic interactions of amino acid side chains. Furthermore, the combination of PFB-FFK and PFB-FFD peptides was also investigated for hydrogelation and the self-assembly of such systems resulted in the formation of untwisted 1D nanofibril structures. Supramolecular coassembled hydrogels of variable stiffness have also been achieved by modulating the concentration of the peptide components, which was evident from the rheological analysis. Such low molecular weight (LMW) peptide materials with tuneable mechanical properties might be a potential material for a wide range of applications in nanotechnology and biotechnology.


Assuntos
Aminoácidos , Hidrogéis , Peptídeos , Reologia , Eletricidade Estática
19.
J Mater Chem B ; 8(43): 9961-9970, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33047761

RESUMO

The discovery of crown ethers and their unique interactions with ions make them play a key role in supramolecular chemistry. In this study, we have developed a new type of amphiphilic crown ether (DB18C6, DB24C8)-conjugated phenylalanine dipeptides for the gelation of water at physiological pH. We report here for the first time that the size of the crown ether controlled the morphology of the self-assembled nanostructures of the hydrogels, as well as their interactions with human mesenchymal stem cells (hMSCs; 3A6-RFP) and mouse fibroblasts (L929). For example, relative to its d-form and other crown sizes, DB18C6LFLF exhibited greater cell adhesion and was nontoxic towards hMSCs after culturing for 72 h. We hypothesize that the steric effect of the crown ether moiety in the assemblies has substantial influences on the morphology of the nanostructures and the cell-material response. Such distinct cell responses should be beneficial for the development of supramolecular biomaterials.


Assuntos
Materiais Biocompatíveis/química , Éteres de Coroa/química , Dipeptídeos/química , Hidrogéis/química , Animais , Linhagem Celular , Fibroblastos/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Modelos Moleculares , Peptídeos , Fenilalanina/química , Estereoisomerismo , Água/química
20.
Cell Rep ; 33(4): 108310, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113375

RESUMO

Neuromuscular junctions (NMJs) govern efficient neuronal communication with muscle cells, relying on proper architecture of specialized postsynaptic compartments. However, the intrinsic mechanism in muscle cells contributing to NMJ development remains unclear. In this study, we reveal that dynamin-2 (Dyn2) is involved in postsynaptic development of NMJs. Mutations of Dyn2 have been linked to human muscular disorder and centronuclear myopathy (CNM), as well as featured with muscle atrophy and defective NMJs, yet the function of Dyn2 at the postsynaptic membrane is largely unknown. We demonstrate that Dyn2 is enriched at the postsynaptic membrane and regulates NMJ development via actin remodeling. Dyn2 functions as an actin-bundling GTPase to regulate podosome turnover and cytoskeletal organization of the postsynaptic apparatus, and CNM-Dyn2 mutations display abnormal actin remodeling and electrophysiological activity of fly NMJs. Altogether, Dyn2 primarily regulates actin cytoskeleton remodeling and NMJ morphogenesis at the postsynaptic membrane, which is distinct from its endocytosis regulatory role at the presynaptic membrane.


Assuntos
Citoesqueleto/fisiologia , Dinamina II/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA