Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 17: 3483-3495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959282

RESUMO

Purpose: The objective of this study was to investigate the antitumor activity, targeting capability, and mechanism of the developed nanodrug consisting of doxorubicin and exosome (Exo-Dox) derived from mesenchymal stem cells in vitro and in vivo. Methods: The exosomes were isolated with Exosome Isolation Kit, and the Exo-Dox was prepared by mixing exosome with Dox-HCl, desalinizing with triethylamine and then dialyzing against PBS overnight. The exosome and Exo-Dox were examined by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The antitumor activity, targeting capability, and mechanism of the developed Exo-Dox were evaluated by cell viability assay, histological and immunofluorescence analysis and in vivo imaging system. Results: NTA results showed the size of the exosomes had increased from 141.6 nm to 178.1 nm after loading with doxorubicin. Compared with free Dox, the Exo-Dox exhibited higher cytotoxicity against osteosarcoma MG63 cells, HOS cells, and 143B cells than free Dox, the half-maximal inhibitory concentrations (IC50) of Dox, Exo-Dox were calculated to be 0.178 and 0.078 µg mL-1 in MG63 cells, 0.294 and 0.109µg mL-1 in HOS cells, 0.315 and 0.123 µg mL-1 in 143B cells, respectively. The in vivo imaging showed that MSC derived Exo could serve as a highly efficient delivery vehicle for targeted drug delivery. The immunohistochemistry and histology analysis indicated that compared with the free Dox group, the Ki67-positive cells and cardiotoxicity in Exo-Dox group were significantly decreased. Conclusion: Our results suggested that MSC-derived Exo could be excellent nanocarriers used to deliver chemotherapeutic drug Dox specifically and efficiently in osteosarcoma, resulting in enhanced toxicity against osteosarcoma and less toxicity in heart tissue. We further demonstrated the targeting capability of Exo was due to the chemotaxis of MSC-derived exosomes to osteosarcoma cells via SDF1-CXCR4 axis.


Assuntos
Neoplasias Ósseas , Exossomos , Células-Tronco Mesenquimais , Nanopartículas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Excipientes , Humanos , Nanopartículas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Receptores CXCR4
2.
Front Immunol ; 13: 1055412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713370

RESUMO

Background: Medullary thyroid carcinoma (MTC), a thyroid C cell-derived malignancy, is poorly differentiated and more aggressive than papillary, follicular and oncocytic types of thyroid cancer. The current therapeutic options are limited, with a third of population suffering resistance. The differential gene expression pattern among thyroid cancer subtypes remains unclear. This study intended to explore the exclusive gene profile of MTC and construct a comprehensive regulatory network via integrated analysis, to uncover the potential key biomarkers. Methods: Multiple datasets of thyroid and other neuroendocrine tumors were obtained from GEO and TCGA databases. Differentially expressed genes (DEGs) specific in MTC were identified to construct a transcription factor (TF)-mRNA-miRNA network. The impact of the TF-mRNA-miRNA network on tumor immune characteristics and patient survival was further explored by single-sample GSEA (ssGSEA) and ESTIMATE algorithms, as well as univariate combined with multivariate analyses. RT-qPCR, cell viability and apoptosis assays were performed for in vitro validation. Results: We identified 81 genes upregulated and 22 downregulated in MTC but not in other types of thyroid tumor compared to the normal thyroid tissue. According to the L1000CDS2 database, potential targeting drugs were found to reverse the expressions of DEGs, with panobinostat (S1030) validated effective for tumor repression in MTC by in vitro experiments. The 103 DEGs exclusively seen in MTC were involved in signal release, muscle contraction, pathways of neurodegeneration diseases, neurotransmitter activity and related amino acid metabolism, and cAMP pathway. Based on the identified 15 hub genes, a TF-mRNA-miRNA linear network, as well as REST-cored coherent feed-forward loop networks, namely REST-KIF5C-miR-223 and REST-CDK5R2-miR-130a were constructed via online prediction and validation by public datasets and our cohort. Hub-gene, TF and miRNA scores in the TF-mRNA-miRNA network were related to immune score, immune cell infiltration and immunotherapeutic molecules in MTC as well as in neuroendocrine tumor of lung and neuroblastoma. Additionally, a high hub-gene score or a low miRNA score indicated good prognoses of neuroendocrine tumors. Conclusion: The present study uncovers underlying molecular mechanisms and potential immunotherapy-related targets for the pathogenesis and drug discovery of MTC.


Assuntos
Carcinoma Neuroendócrino , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , RNA Mensageiro/genética , Perfilação da Expressão Gênica , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Neoplasias da Glândula Tireoide/patologia
3.
Int J Gen Med ; 14: 6477-6485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675615

RESUMO

PURPOSE: The aim of this research was to investigate the clinical significance of the expression of flap structure-specific endonuclease 1 (FEN1) in primary osteosarcoma. METHODS: The expression of FEN1 was detected by immunohistochemistry analysis. The association of the expression of FEN1 in osteosarcoma with clinicopathological parameters was analyzed by using χ 2 test or Fisher's exact test. Survival analyses were performed by Kaplan-Meier method and Cox proportional hazards regression model. RESULTS: Of the 40 osteosarcoma patients, 19 (47.5%) patients presented with FEN1 high expression, while in the non-neoplastic bone specimens, the FEN1 high expression was observed in 10% (3/30), the positive expression rate in osteosarcoma patients was significantly higher than that of non-neoplastic bone specimens (P< 0.01). Univariate analysis indicated that the progression-free survival (PFS) and overall survival (OS) were correlated with the expression level of FEN1 (PFS, P < 0.001; OS, P = 0.002), Enneking staging (PFS, P = 0.026; OS, P = 0.044) and chemotherapy response (PFS, P = 0.019; OS, P = 0.031). Multivariate analysis demonstrated that FEN1 expression was an independent prognostic factor for the PFS (HR = 4.73, P = 0.002) and OS (HR = 4.01, P = 0.038) of osteosarcoma patients. CONCLUSION: This study showed that FEN1 was overexpressed in osteosarcoma patients and positively associated with poor prognosis of osteosarcoma patients. Further studies should focus on the relative mechanisms and the targeted FEN1 therapies for osteosarcoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA