Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Clin Transl Med ; 14(5): e1670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689429

RESUMO

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Osteossarcoma , Proteínas Wnt , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Animais , Camundongos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral
2.
ChemSusChem ; : e202400751, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752305

RESUMO

The development of non-precious metal electrocatalysts with excellent activity and durability for electrochemical water splitting has always been a goal. Transition metal sulfides are attractive electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this article, we designed and constructed efficient catalysts with multiple synergistic interactions and synthesized Ce-NiS2@NF nanosphere using a solvothermal method. Ce-NiS2@NF exhibits excellent HER performance, OER performance, and overall water splitting capability in alkaline electrolytes, demonstrating good stability. The addition of Ce influences the activity of the catalysts, attributed to the synergistic interactions creating more active sites and higher intrinsic activity through the introduction of Ce heteroatoms. Additionally, the self-supported conductive substrate promotes electron transfer, enhancing the intrinsic activity and active site density of the catalyst. This study provides an in-depth investigation into structural design and performance enhancement, offering ideas for designing efficient catalysts for overall water electrolysis. This work provides an in-depth study in terms of structural design performance enhancement and provides ideas for designing efficient alkaline bifunctional catalysts. Valuable insights have been provided in elucidating the intrinsic mechanism of the catalytic activity of cerium-doped nickel sulfide nanospheres, thus providing new guidance in the field of energy conversion technology.

3.
J Colloid Interface Sci ; 664: 178-185, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460382

RESUMO

H2 produced through hydrogen evolution reaction (HER) is a shining star in the field of clean energy. Significant efforts have been dedicated to develop efficient and stable electrocatalysts to reduce the energy barrier and accelerate the kinetics of Hydrogen evolution reaction (HER) under various environments. Herein, we propose a strategy to accelerate the kinetics of HER under acid and alkaline environments by combining heterostructure engineering with defect engineering. We have successfully synthesized a series of WS2/WO3-x heterostructured catalysts, accompanied with substantial oxygen vacancies using a two-step synthesis method. With the partially sulfurization of WO3-x, the heterojunction interface of WS2 and WO3-x was formed along with the appearance of oxygen vacancies, which can facilitate the migration of electrons. The heterostructured catalyst enriched with oxygen vacancies (defined as WS2/WO3-x-2) demonstrates superior HER performance in acidic and alkaline electrolytes. At a current density of 10 mA cm-2, the WS2/WO3-x-2 heterostructured catalyst manifests an overpotential of 120 mV in the acidic electrolytes and a slightly higher overpotential of 150 mV in an alkaline environment. The overpotentials offer an improvement compared to reported W-based catalysts in terms of HER performance. This work provides guiding significance on the design of heterostructured catalysts with promising performance for HER in acidic and alkaline environments.

4.
ChemSusChem ; : e202400056, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525654

RESUMO

The development of low-cost transition metal compounds with high-performance for efficient oxygen evolution reaction (OER) is of great significance in promoting the development of electrocatalysis. In this study, a Ce-doped Ni3S4 catalyst (Ce0.2-Ni3S4) was synthesized through a one-step solvothermal method, where the doped rare earth element Ce induced the transformation of NiS to Ni3S4. The Ce0.2-Ni3S4 catalyst exhibited excellent OER performance in 1 M KOH. At a current density of 10 mA cm-2, it showed a low overpotential of 230 mV and a low Tafel slope of 52.39 mV dec-1. Long-term OER tests at the same potential lasted for 24 h without significant loss of current density. This work introduces a novel method of Ce element doping for modifying transition metal sulfides, providing new insights into the effective utilization of rare earth elements in the field of electrochemistry. It creates more chances for the progress of highly efficient catalysts for efficient OER, contributing to the advancement of electrocatalysis.

5.
J Colloid Interface Sci ; 652(Pt B): 1756-1763, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672978

RESUMO

Synthesizing catalysts for efficient oxygen evolution reaction (OER) with lower cost and simpler design is of significant importance to achieve sustainable hydrogen production. In this work, we propose a novel "sacrificial solvent method" for the first time. Dicobalt octacarbonyl (Co2(CO)8), dimethyl sulfoxide (DMSO), and Ni foam (NF) were used as the raw materials in the solvothermal process. DMSO played the role of both the sacrificial solvent and the sulfur source. Through the self-consumption of DMSO, we finally obtained the Co9S8/Ni3S2 heterostructure supported on the NF (Co9S8/Ni3S2@NF) in one step. The Co9S8/Ni3S2@NF catalyst exhibited excellent OER activity in alkaline environment, with an overpotential of only 264 mV at a current density of 20 mA cm-2, a low Tafel slope of 68.28 mV dec-1 and maintained its current density after 20 h of constant potential testing. This work introduces a new method for synthesizing metal sulfide catalysts using DMSO as a sacrificial solvent. It provides broader opportunities for the development of more efficient and sustainable catalysts for energy conversion and storage.

6.
J Dev Biol ; 11(3)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754840

RESUMO

Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near FOXC1 as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17ß-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near Foxc1. Knockdown of Gata4 in mouse osteoblasts in vitro decreases Foxc1 expression as does knockout of Gata4 in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for FOXC1, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.

7.
Chemistry ; 29(52): e202301565, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37358246

RESUMO

Molybdenum dioxide (MoO2 ) demonstrates a big potential toward lithium-ion storage due to its high theoretical capacity. The sluggish reaction kinetics and large volume change during cycling process, however, unavoidably lead to inferior electrochemical performance, thus failing to satisfy the requirements of practical applications. Herein, we developed a molybdenum-based oxyacid salt confined pyrolysis strategy to achieve a novel hierarchical porous MoO2 @Mo2 N@C composite. A two-step successive annealing process was proposed to obtain a hybrid phase of MoO2 and Mo2 N, which was used to further improve the electrochemical performance of MoO2 -based anode. We demonstrate that the well-dispersed MoO2 nanoparticles can ensure ample active sites exposure to the electrolyte, while conductive Mo2 N quantum dots afford pseudo-capacitive response, which conduces to the migration of ions and electrons. Additionally, the interior voids could provide buffer spaces to surmount the effect of volume change, thereby avoiding the fracture of MoO2 nanoparticles. Benefiting from the aforesaid synergies, the as-obtained MoO2 @Mo2 N@C electrode demonstrates a striking initial discharge capacity (1760.0 mAh g-1 at 0.1 A g-1 ) and decent long-term cycling stability (652.5 mAh g-1 at 1.0 A g-1 ). This work provides a new way for the construction of advanced anode materials for lithium-ion batteries.

8.
Chemistry ; 29(44): e202300741, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195143

RESUMO

The development of cost-effective transition metal catalysts for oxygen evolution reaction (OER) is critical for the production of hydrogen fuel from water splitting. Low-cost and efficient stainless steel-based catalysts are expected to replace the scarce platinum group metals for large-scale energy applications. Here in this work, we report the conversion of commonly available inexpensive and easily accessible 434-L stainless steel (SS) into highly active and stable electrodes by corrosion and sulfuration strategies. The Nix Fe1-x S layer as a pre-catalyst and S-doped Nix Fe oxyhydroxides in situ formed on the catalyst surface are the true active species for OER. The optimized 434-L stainless steel-based electrocatalyst exhibits a low overpotential of 298 mV at 10 mA cm-2 in 1.0 M KOH with a small OER kinetics (the Tafel slope of 54.8 mV dec-1 ) and good stability. This work reveals the 434-L alloy stainless steel with Fe and Cr as the main elements can be used as qualified OER catalysts by surface modification, along with a new mentality to solve the energy and resource waste problems.

9.
Nanoscale Adv ; 5(7): 1999-2009, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36998656

RESUMO

The development of fast and economical hydrogel manufacturing methods is crucial for expanding the application of hydrogels. However, the commonly used rapid initiation system is not conducive to the performance of hydrogels. Therefore, the research focuses on how to improve the preparation speed of hydrogels and avoid affecting the properties of hydrogels. Herein, a redox initiation system with nanoparticle-stabilized persistent free radicals was introduced to rapidly synthesize high-performance hydrogels at room temperature. A redox initiator composed of vitamin C and ammonium persulfate rapidly provides hydroxyl radicals at room temperature. Simultaneously, three-dimensional nanoparticles can stabilize free radicals and prolong their lifetime, thereby increasing the free radical concentration and accelerating the polymerization rate. And casein enabled the hydrogel to achieve impressive mechanical properties, adhesion, and electrical conductivity. This method greatly facilitates the rapid and economical synthesis of high-performance hydrogels and presents broad application prospects in the field of flexible electronics.

10.
Genes (Basel) ; 14(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36833272

RESUMO

Androgen receptor (AR) is expressed in numerous tissues and serves important biologic functions in skin, prostate, immune, cardiovascular, and neural systems, alongside sexual development. Several studies have associated AR expression and patient survival in various cancers, yet there are limited studies examining the relationship between AR expression and cutaneous melanoma. This study used genomics and proteomics data from The Cancer Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA), with 470 cutaneous melanoma patient data points. Cox regression analyses evaluated the association between AR protein level with overall survival and revealed that a higher level of AR protein was positively associated with a better overall survival (OS) (p = 0.003). When stratified by sex, the AR association with OS was only significant for both sexes. The multivariate Cox models with justifications of sex, age of diagnosis, stage of disease, and Breslow depth of the tumor confirmed the AR-OS association in all patients. However, the significance of AR was lost when ulceration was included in the model. When stratified by sex, the multivariate Cox models indicated significant role of AR in OS of female patients but not in males. AR-associated genes were identified and enrichment analysis revealed shared and distinct gene network in male and female patients. Furthermore, AR was found significantly associated with OS in RAS mutant subtypes of melanoma but not in BRAF, NF1, or triple-wild type subtypes of melanoma. Our study may provide insight into the well-known female survival advantage in melanoma patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Masculino , Feminino , Melanoma/genética , Neoplasias Cutâneas/patologia , Receptores Androgênicos/genética , Prognóstico , Melanoma Maligno Cutâneo
11.
Small ; 18(44): e2204827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148861

RESUMO

The rational design for transition metals-based carbon nano-materials as efficient electrocatalysts still remains a crucial challenge for economical electrochemical hydrogen production. Carbon nanotubes (CNTs) as attractive electrocatalysts are typically activated by non-metal dopant to promote catalytic performance. Metals doping or metal/non-metal co-doping of CNTs, however, are rarely explored. Herein, this work rationally designs bimetal oxide templates of ZnCo2 O4 for heterogeneously doping Zn and N into Co nanoparticles embedded carbon nanotubes (Co@Zn-N-CNTs). During the formation of CNTs, Zn atoms volatilize from ZnCo2 O4 and in situ dope into the carbon skeleton. In particular, owing to the low electronegativity of Zn, the electrons aptly transfer from Zn to carbon atoms, which generate a high electron density for the carbon layers and offer more preponderant catalytic sites for hydrogen reduction. The Co@Zn-N-CNTs catalyst exhibits enhanced hydrogen evolution reaction activity in 0.5 m H2 SO4 electrolyte, with a low onset potential of -20 mV versus RHE at 1 mA cm-2 , an overpotential of 67 mV at 10 mA cm-2 , a small Tafel slope of 52.1 mV dec-1 , and persistent long-term stability. This study provides brand-new insights into the utilization of Zn as electronic regulator and activity promoter toward the design of high-efficiency electrocatalysts.

12.
Hum Genet ; 141(12): 1849-1861, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678873

RESUMO

Osteoporosis is a serious public health problem that affects 200 million people worldwide. Genome-wide association studies have revealed the association between several single nucleotide polymorphisms (SNPs) near WNT/ß-catenin signaling genes and bone mineral density (BMD). The activation of ß-catenin by WNT ligands is required for osteoblast differentiation. SNP rs9921222 is an intronic variant of AXIN1 (a scaffold protein in the destruction complex that regulates ß-catenin signaling) that correlates with BMD. However, the biological mechanism of SNP rs9921222 has never been reported. Here, we show that the genotype of SNP rs9921222 correlates with the expression of AXIN1 in human osteoblasts. RNA and genomic DNA were analyzed from primary osteoblasts from 111 different individuals. Homozygous TT at rs9921222 correlates with a higher expression of AXIN1 than homozygous CC. Regional association analysis showed that rs9921222 is in high linkage disequilibrium (LD) with SNP rs10794639. In silico transcription factor analysis predicted that rs9921222 is within a GATA4 motif and rs10794639 is adjacent to an estrogen receptor alpha (ERα) motif. Mechanistically, GATA4 and ERα bind at SNPs rs9921222 and rs10794639 as detected by ChIP-qPCR. Luciferase assays demonstrate that rs9921222 is the causal SNP to alter ERα and GATA4 binding. GATA4 promoted the expression, and in contrast, ERα suppressed the expression of AXIN1 via the histone deacetylase complex member SIN3A. Functionally, the level of AXIN1 negatively correlates with the level of transcriptionally active ß-catenin. In summary, we have discovered a molecular mechanism of the SNP rs9921222 to regulate AXIN1 through GATA4 and ERα binding in human osteoblasts.


Assuntos
Receptor alfa de Estrogênio , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Receptor alfa de Estrogênio/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Osteoblastos/metabolismo , Via de Sinalização Wnt/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
13.
Small ; 18(7): e2102397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862722

RESUMO

Smart supercapacitors are a promising energy storage solution due to their high power density, long cycle life, and low-maintenance requirements. Functional polymers (FPs) and inorganic nanomaterials are used in smart supercapacitors because of the favorable mechanical properties (flexibility and stretchability) of FPs and the energy storage properties of inorganic materials. The complementary properties of these materials facilitate commercial applications of smart supercapacitors in flexible smart wearables, displays, and self-generation, as well as energy storage. Here, an overview of strategies for the development of suitable materials for smart supercapacitors is presented, based on recent literature reports. A range of synthetic techniques are discussed and it is concluded that a combination of organic and inorganic hybrid materials is the best option for realizing smart supercapacitors. This perspective facilitates new strategies for the synthesis of hybrid materials, and the development of material technologies for smart energy storage applications.

14.
Am J Hum Genet ; 109(1): 97-115, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34906330

RESUMO

Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17ß-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits ß-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.


Assuntos
Densidade Óssea , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Wnt/genética , Adipogenia , Alelos , Animais , Sítios de Ligação , Densidade Óssea/genética , Diferenciação Celular/genética , Células Cultivadas , Bases de Dados Genéticas , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Osteogênese/genética , Ligação Proteica , Transdução de Sinais , Proteínas Wnt/metabolismo
15.
Neuroimmunomodulation ; 28(4): 222-228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34392244

RESUMO

BACKGROUND: Interleukin-1 (IL-1) and IL-6 polymorphisms might influence predisposition to hemorrhagic cerebral vascular diseases, but the results of already published studies regarding relationship between IL-1/IL-6 polymorphisms and hemorrhagic cerebral vascular diseases were still controversial and ambiguous. OBJECTIVES: The authors designed this meta-analysis to more precisely estimate the relationship between IL-1/IL-6 polymorphisms and hemorrhagic cerebral vascular diseases by pooling the results of already published related studies. METHODS: The authors searched PubMed, EMBASE, Web of Science, and CNKI for already published studies. Eighteen already published studies were pooled analyzed in this meta-analysis. RESULTS: The pooled meta-analyses' results showed that distributions of IL-1A rs1800587, IL-1B rs16944, and IL-6 rs1800796 polymorphisms among patients and controls differed significantly. Moreover, distribution of the IL-6 rs1800795 polymorphism among patients and controls from Asians also differed significantly. Further analyses showed similar findings for IL-1A rs1800587, IL-1B rs16944, and IL-6 rs1800796 polymorphisms in aneurysmal subarachnoid hemorrhage (aSAH) subgroup. CONCLUSIONS: This meta-analysis suggested that IL-1A rs1800587, IL-1B rs16944, and IL-6 rs1800796 polymorphisms might influence susceptibility to hemorrhagic cerebral vascular diseases, especially for aSAH. Moreover, IL-6 rs1800795 might influence susceptibility to hemorrhagic cerebral vascular diseases in Asians.


Assuntos
Interleucina-1/genética , Interleucina-6 , Doenças Vasculares , Povo Asiático , Predisposição Genética para Doença , Humanos , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único , Doenças Vasculares/genética
16.
Chemistry ; 27(42): 10998-11004, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33909301

RESUMO

Fe0.95 S1.05 with high reactivity and stability was incorporated into WS2 nanosheets via a one-step solvothermal method for the first time. The resulted hybrid catalyst has much higher catalytic activity than WS2 and Fe0.95 S1.05 alone, and the optimal WS2 /Fe0.95 S1.05 hybrid catalyst was found by adjusting the feed ratio. The addition of Fe0.95 S1.05 was proven to be able to enhance the hydrogen evolution reaction (HER) activity of WS2 , and vice versa. At the same time, it was found that the catalytic effect of the hybrid catalyst was the best when the feed ratio was W : Fe=2 : 1. In other words, we confirmed that there is a synergistic effect between W- and Fe-based sulfide hybrid catalysts, and validated that the reason for the improved HER performance is the strong interaction between the two in the middle sulfur. WS2 /Fe0.95 S1.05 -2 hybrid catalyst leads to enhanced HER activity, which shows a low overpotential of ∼0.172 V at 10 mA cm-2 , low Tafel slope of ∼53.47 mV/decade. This study supplies innovative synthesis of a highly active WS2 /Fe0.95 S1.05 hybrid catalyst for HER.

17.
Bone ; 144: 115819, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338666

RESUMO

GATA4 is a transcription factor that regulates osteoblast differentiation. However, GATA4 is expressed at a higher level in mesenchymal stem cells (MSCs) than in osteoblasts. Therefore, the role of GATA4 in limb bud mesenchyme differentiation was investigated in mice by knocking out Gata4 using Cre-recombinase controlled by the Prx1 promoter (herein called Gata4 Prx-cKO mice). µCT analysis of the Gata4 Prx-cKO mice showed a decrease in trabecular bone properties compared with wildtype (Gata4fl/fl) littermates. Gata4 Prx-cKO mice have fewer MSCs as measured by CFU-F assays, mesenchymal progenitor cells (MPC2) (flow cytometry of Sca1+/CD45-/CD34-/CD44hi) and nestin immunofluorescence. Gata4 Prx-cKO bone marrow-derived MSCs have a significant reduction in WNT ligands, including WNT10B, and WNT signalosome components compared to control cells. Chromatin immunoprecipitation demonstrates that GATA4 is recruited to enhancers near Wnt3a, Wnt10b, Fzd6 and Dkk1. GATA4 also directly represses YAP in wildtype cells, and the absence of Gata4 leads to increased YAP expression. Together, we show that the decrease in MSCs is due to loss of Gata4 and a WNT10B-dependent positive autoregulatory loop. This leads to a concurrent increase of YAP and less activated ß-catenin. These results explain the decreased trabecular bone in Gata4 Prx-cKO mice. We suggest that WNT signalosome activity in MSCs requires Gata4 and Wnt10b expression for lineage specification.


Assuntos
Fator de Transcrição GATA4/fisiologia , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Osteoblastos/metabolismo , Osteogênese , Proteínas Wnt , beta Catenina/metabolismo
18.
J Exp Clin Cancer Res ; 39(1): 233, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153490

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

19.
ACS Appl Mater Interfaces ; 12(36): 40186-40193, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805866

RESUMO

Intensive research is being conducted into highly efficient and cheap nanoscale materials for the electrocatalytic oxidation of water. In this context, we built heterostructures of multilayered CoNi-cyanide bridged coordination (CoNi-CP) nanosheets and graphene oxide (GO) sheets (CoNi-CP/GO) as a source for heterostructured functional electrodes. The layered CoNi-CP/GO hybrid components heated in nitrogen gas (N2) at 450 °C yield CoNi-based carbide (CoNi-C) through thermal decomposition of CoNi-CP, while GO is converted into reduced GO (rGO) to finally form a CoNi-C/rGO-450 composite. The CoNi-C/rGO-450 composite shows a reasonable efficiency for oxygen evolution reaction (OER) through water oxidations in alkaline solution. Meanwhile, regulated annealing of CoNi-CP/GO in N2 with thiourea at 450 and 550 °C produces CoNi-based sulfide (CoNi-S) rather than CoNi-C between rGO sheets co-doped by nitrogen (N) and sulfur (S) heteroatoms (NS-rGO) to form CoNi-S/NS-rGO-450 and CoNi-S/NS-rGO-550 composites, respectively. The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of 79.5 mV dec-1. By applying the iR compensation to remove resistance of the solution (2.1 Ω), the performance is further improved to achieve a current density of 10 mA cm-2 at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec-1. This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future.

20.
Langmuir ; 36(16): 4231-4249, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32293183

RESUMO

Over the past decades, the development of porous materials has directly or indirectly affected industrial production methods. Metal-organic frameworks (MOFs) as an emerging class of porous materials exhibit some unique advantages, including controllable composition, a large surface area, high porosity, and so on. These attractive characteristics of MOFs have led to their potential applications in energy storage and conversion devices, drug delivery, adsorption and storage, sensors, and other areas. However, powdered MOFs have limited practical applications owing to poor processability, safety hazards from dust formation, and poor recyclability. In addition, the inherent micro/mesoporosities of MOFs also reduce the accessibility and diffusion kinetics for large molecules. To improve their processability for practical applications, MOFs are often deposited as MOF layers or films (i.e., MOF-coated composites) on supporting materials or are formed into 3D structured composites, such as aerogels and hydrogels. In this article, we review recent researches on these MOF composites, including their synthetic methods and potential applications in energy storage devices, heavy metal ion adsorption, and water purification. Finally, the future outlook and challenges associated with the large-scale fabrication of MOF-based composites for practical applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA