Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485624

RESUMO

The Zr(IV) ions are easily hydrolyzed to form oxides, which severely limits the discovery of new structures and applications of Zr-based compounds. In this work, three ferrocene (Fc)-functionalized Zr-oxo clusters (ZrOCs), Zr9Fc6, Zr10Fc6 and Zr12Fc8 were synthesized through inhibiting the hydrolysis of Zr(IV) ions, which show increased nuclearity and regular structural variation. More importantly, these Fc-functionalized ZrOCs were used as heterogeneous catalysts for the transfer hydrogenation of levulinic acid (LA) and phenol oxidation reactions for the first time, and displayed outstanding catalytic activity. In particular, Zr12Fc8 with the largest number of Zr active sites and Fc groups can achieve > 95% yield for LA-to-γ-valerolactone within 4 h (130 °C) and > 98% yield for 2,3,6-trimethylphenol-to-2,3,5-trimethyl-p-benzoquinone within 30 min (80 °C), showing the best catalytic performance. Catalytic characterization combined with theory calculations reveal that in the Fc-functionalized ZrOCs, the Zr active sites could serve as substrate adsorption sites, while the Fc groups could act as hydrogen transfer reagent or Fenton reagent, and thus achieve effectively intramolecular metal-ligand synergistic catalysis. This work develops functionalized ZrOCs as catalysts for thermal-triggered redox reactions.

2.
Sci Bull (Beijing) ; 69(4): 492-501, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38044194

RESUMO

The performance applications (e.g., photocatalysis) of zirconium (Zr) and hafnium (Hf) based complexes are greatly hindered by the limited development of their structures and the relatively inert metal reactivity. In this work, we constructed two ultrastable Zr/Hf-based clusters (Zr9-TC4A and Hf9-TC4A) using hydrophobic 4-tert-butylthiacalix[4]arene (H4TC4A) ligands, in which unsaturated coordinated sulfur (S) atoms on the TC4A4- ligand can generate strong metal-ligand synergy with nearby active metal Zr/Hf sites. As a result, these two functionalized H4TC4A ligands modified Zr/Hf-oxo clusters, as catalysts for the amine oxidation reaction, exhibited excellent catalytic activity, achieving very high substrate conversion (>99%) and product selectivity (>90%). Combining comparative experiments and theoretical calculations, we found that these Zr/Hf-based cluster catalysts accomplish efficient amine oxidation reactions through synergistic effect between metals and ligands: (i) The photocatalytic benzylamine (BA) oxidation reaction was achieved by the synergistic effect of the dual active sites, in which, the naked S sites on the TC4A4- ligand oxidize the BA by photogenerated hole and oxygen molecules are reduced by photogenerated electrons on the metal active sites; (ii) in the aniline oxidation reaction, aniline was adsorbed by the bare S sites on ligands to be closer to metal active sites and then oxidized by the oxygen-containing radicals activated by the metal sites, thus completing the catalytic reaction under the synergistic catalytic effect of the proximity metal-ligand. In this work, the Zr/Hf-based complexes applied in the oxidation of organic amines have been realized using active S atom-directed metal-ligand synergistic catalysis and have demonstrated very high reactivity.

3.
Angew Chem Int Ed Engl ; 62(36): e202308505, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37435787

RESUMO

Photocatalytic synthesis of hydrogen peroxide (H2 O2 ) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14 (L-CH3 )24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2 O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 µmol g-1 h-1 for H2 O2 production under O2 -saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host-guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2 O2 synthesis.

4.
J Am Chem Soc ; 145(29): 16098-16108, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428127

RESUMO

While the difference in catalytic reactivity between mono- and multimetallic sites is often attributed to more than just the number of active sites, still few catalyst model systems have been developed to explore more underlying causal factors. In this work, we have elaborately designed and constructed three stable calix[4]arene (C4A)-functionalized titanium-oxo compounds, Ti-C4A, Ti4-C4A, and Ti16-C4A, with well-defined crystal structures, increasing nuclearity, and tunable light absorption capacity and energy levels. Among them, Ti-C4A and Ti16-C4A can be taken as model catalysts to compare the differences in reactivity between mono- and multimetallic sites. Taking CO2 photoreduction as the basic catalytic reaction, both compounds can achieve CO2-to-HCOO- conversion with high selectivity (close to 100%). Moreover, the catalytic activity of multimetallic Ti16-C4A is up to 2265.5 µmol g-1 h-1, which is at least 12 times higher than that of monometallic Ti-C4A (180.0 µmol g-1 h-1), and is the best-performing crystalline cluster-based photocatalyst known to date. Catalytic characterization combined with density functional theory calculations shows that in addition to the advantage of having more metal active sites (for adsorption and activation of more CO2 molecules), Ti16-C4A can effectively reduce the activation energy required for the CO2 reduction reaction by completing the multiple electron-proton transfer process rapidly with synergistic metal-ligand catalysis, thus exhibiting superior catalytic performance to that of monometallic Ti-C4A. This work provides a crystalline catalyst model system to explore the potential factors underlying the difference in catalytic reactivity between mono- and multimetallic sites.

5.
Angew Chem Int Ed Engl ; 62(33): e202304728, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37321974

RESUMO

Structural variants of high-nuclearity clusters are extremely important for their modular assembly study and functional expansion, yet the synthesis of such giant structural variants remains a great challenge. Herein, we prepared a lantern-type giant polymolybdate cluster (L-Mo132 ) containing equal metal nuclearity with the famous Keplerate type Mo132 (K-Mo132 ). The skeleton of L-Mo132 features a rare truncated rhombic triacontrahedron, which is totally different with the truncated icosahedral K-Mo132 . To the best of our knowledge, this is the first time to observe such structural variants in high-nuclearity cluster built up of more than 100 metal atoms. Scanning transmission electron microscopy reveals that L-Mo132 has good stability. More importantly, because the pentagonal [Mo6 O27 ]n- building blocks in L-Mo132 are concave instead of convex in the outer face, it contains multiple terminal coordinated water molecules on its outer surface, which make it expose more active metal sites to display superior phenol oxidation performance, which is more higher than that of K-Mo132 coordinated in M=O bonds on the outer surface.

6.
J Am Chem Soc ; 145(11): 6112-6122, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883963

RESUMO

Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.

7.
Small ; 18(48): e2205444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36284496

RESUMO

Metal-oxo clusters have emerged as advanced proton conductors with well-defined and tunable structures. Nevertheless, the exploitation of metal-oxo clusters with high and stable proton conductivity over a relatively wide temperature range still remains a great challenge. Herein, three sulfate groups decorated zirconium-oxo clusters (Zr6 , Zr18 , and Zr70 ) as proton conductors are reported, which exhibit ultrahigh bulk proton conductivities of 1.71 × 10-1 , 2.01 × 10-2 , and 3.73 × 10-2  S cm-1 under 70 °C and 98% relative humidity (RH), respectively. Remarkably, Zr6 and Zr70 with multiple sulfate groups as proton hopping sites show ultralow activation energies of 0.22 and 0.18 eV, respectively, and stable bulk conductivities of >10-2  S cm-1 between 30 and 70 °C at 98% RH. Moreover, a time-dependent proton conductivity test reveals that the best performing Zr6 can maintain high proton conductivity up to 15 h with negligible loss at 70 °C and 98% RH, representing one of the best crystalline cluster-based proton conducting materials.

8.
Front Psychol ; 12: 782472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956000

RESUMO

Incidental affect has an important impact on intertemporal choice (IC). This research aimed to test how positive incidental affect influences IC and its underlying mechanisms. We assumed that positive incidental affect may have a disjunction effect on IC that includes or excludes immediate time. Moreover, we examined the role of time perception for the effect of affect on IC. In Study 1, after undergoing affect priming by video clips, participants completed the IC task using a multiple staircase paradigm. Using Hierarchical Bayesian Modeling, we estimated the discount rate parameter by distinguishing "immediate" and "non-immediate" conditions of IC. The participants' time perception was also measured. In Study 2, apart from the choice preference of IC, we additionally investigated the differences in the participants' attention to delay and reward attributes before decision making. The results of the two studies indicated that positive incidental affect leads to longer time perception (Study 1) and prior and more attention to the delay attribute of IC (Study 2), which leads individuals to prefer immediate options in the IC (Studies 1 and 2). Moreover, there is a disjunction effect of affect; in other words, the incidental affect did not influence IC excluding immediate time (Studies 1 and 2). This study improves our understanding of the disjunctive effect and its mechanism of inducing a positive incidental affect on IC and thus provides a new perspective on how related decision making can be improved.

9.
Inorg Chem ; 56(7): 4238-4243, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28333452

RESUMO

Luminescent porous coordination polymers (PCPs) are emerging as attractive oxygen-sensing materials, but they are mostly based on single-wavelength luminometry. Here, we report a special mixed-lanthanide strategy for self-referenced ratiometric oxygen sensing. A series of isostructural, pure-lanthanide, or mixed-lanthanide PCPs, MCF-53(Tb/Eux), were synthesized by solvothermal reactions. Single-crystal X-ray diffraction revealed that MCF-53(Tb/Eux) is composed of complicated two-dimensional coordination networks, which interdigitate to form a three-dimensional supramolecular structure retaining one-dimensional ultra-micropores. MCF-53(Tb/Eux) can undergo multiple single-crystal to single-crystal structural transformations upon desorption/adsorption of coordinative and lattice guest molecules, and the lanthanide metal ions are partially exposed on the pore surface at the guest-free state. Tb(III) ions are not luminescent and only act as separators between Eu(III) ions, and the Tb(III)/Eu(III) mixing ratio can tune the relative emission intensities, luminescence lifetimes of the Eu(III) phosphorescence, and the ligand fluorescence, giving rise to not only ratiometric photoluminescence oxygen sensing but also tunable emission-color-changing ranges.

10.
Angew Chem Int Ed Engl ; 55(15): 4674-8, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948156

RESUMO

Much effort has been devoted to develop new porous structures for methane storage. We report a new porous coordination framework showing exceptional methane uptakes (e.g. 263 v/v at 298 K and 65 bar) and adsorption enthalpies (21.6 kJ mol(-1)) as high as current record holders functionalized by open metal sites. Computational simulations demonstrated that the hierarchical pore structure consisting of single-wall nanocages has suitable sizes/shapes and organic binding sites to enforce not only strong host-methane and methane-methane interactions but also dense packing of methane molecules.

11.
Sci Rep ; 5: 11537, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113287

RESUMO

Separation of highly similar molecules and understanding the underlying mechanism are of paramount theoretical and practical importance, but visualization of the host-guest structure, energy, or dynamism is very difficult and many details have been overlooked. Here, we report a new porous coordination polymer featuring hierarchical porosity and delicate flexibility, in which the three structural isomers of xylene (also similar disubstituted benzene derivatives) can be efficiently separated with an elution sequence inversed with those for conventional mechanisms. More importantly, the separation mechanism is comprehensively and quantitatively visualized by single-crystal X-ray crystallography coupled with multiple computational simulation methods, in which the small apertures not only fit best the smallest para-isomer like molecular sieves, but also show seemingly trivial yet crucial structural alterations to distinguish the meta- and ortho-isomers via a gating mechanism, while the large channels allow fast guest diffusion and enable the structural/energetic effects to be accumulated in the macroscopic level.

12.
Chem Commun (Camb) ; 47(8): 2402-4, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21161111

RESUMO

Three 5,5'-azotetrazolate based Zn(II) and Ni(II) complexes exhibit novel supramolecular structures and emit multi-photoluminescence under laser excitation and the multi-photoluminescence promises a multi-channel signal photoluminescent material.


Assuntos
Complexos de Coordenação/química , Níquel/química , Zidovudina/química , Zinco/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Microscopia Confocal , Microscopia de Fluorescência , Conformação Molecular , Zidovudina/síntese química
13.
Dalton Trans ; (44): 6165-9, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18985249

RESUMO

Seven isomorphous 1D chain Ln3+ complexes Ln(BTA)(HCOO)(H2O)3 (Ln = Pr (1), Gd (2), Eu (3), Tb (4) Dy (5), Er (6) and Yb (7)), and two formate coordinating and bridging 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr (8) and Nd (9)) have been synthesized and characterized by single crystal X-ray diffraction analysis. Although the Ln3+ ions in 1-7 have different radius, the trivalent lanthanide ions in 1-7 show the same coordinated environment. The well-defined single crystal structures of 8 and 9 are first samples for formate-bridged Ln3+ metallic complexes. The luminescent properties of solid samples of 2-5 at room temperature and the magnetic property of 2 have been also reported and discussed in this paper.

14.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 1): m238, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21200580

RESUMO

The title complex, [Cd(C(2)HN(9))(C(10)H(8)N(2))(2)]·0.5C(10)H(8)N(2)·H(2)O, was prepared under hydro-thermal reaction conditions. The asymmetric unit contains the cadmium complex, half a 2,2'-bipyridine solvent mol-ecule and a solvent water mol-ecule. The Cd(II) ion is coordinated by four N atoms from two 2,2'-bipyridine ligands and two N atoms from an HBTA(-) anion ligand [where H(2)BTA is N,N-bis-(1H-tetra-zol-5-yl)amine], forming an octa-hedral geometry. The complex is linked into a three-dimensional network by O-H⋯N and N-H⋯N hydrogen bonds and by the stacking inter-actions of rings, with distances of 3.5-3.7 Šbetween the atoms of two parallel 2,2'-bipyridine rings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA