Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(14): 11275-11288, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068672

RESUMO

Ovarian cancer (OC), which threatens women's lives, is a common tumor of the female reproductive system. Annexin A8 (ANXA8) is highly expressed in OC. However, the mechanism of ANXA8 in OC remains unclear. This study investigated the potential mechanisms of ANXA8 in OC. The expression of ANXA8 in OC cells was determined by qRT-PCR and western blotting. ANXA8 interference plasmid was constructed. Moreover, CCK-8, EDU staining, TUNEL staining, western blotting, wound healing, and transwell assays were used to detect cell proliferation, apoptosis, migration, and invasion, respectively. Next, the relationship between ANXA8 and ubiquitin C-terminal hydrolase L5 (UCHL5) was verified through Co-IP. Finally, western blotting was used to detect the expression of Wnt/ß-catenin signaling-related proteins. Additionally, we further interfered ANXA8 in nude mice with OC, and detected the expression of ANXA8, UCHL5 and the signaling pathway-related proteins by immunohistochemistry and western blotting. Our results suggested that ANXA8 expression was significantly increased in OC cells. ANXA8 interference significantly attenuated the proliferative, invasive, and migratory capabilities and promoted the apoptotic ability of OC cells. Moreover, the expression of UCHL5 in OC was significantly increased. ANXA8 bound to UCHL5 in OC cells. Knockdown of ANXA8 attenuated OC cell malignant progression by downregulating the expression of UCHL5. Furthermore, ANXA8 affected the expression of Wnt/ß-catenin signaling pathway-related proteins in OC cells via UCHL5. Collectively, ANXA8 interference suppressed the activation of Wnt/ß-catenin signaling pathway via UCHL5 to inhibit cell proliferation, invasion, migration and induce cell apoptosis in OC, thus presenting a potential therapeutic strategy for OC treatment.


Assuntos
Anexinas , Apoptose , Proliferação de Células , Camundongos Nus , Neoplasias Ovarianas , Via de Sinalização Wnt , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Via de Sinalização Wnt/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/genética , Apoptose/genética , Anexinas/metabolismo , Anexinas/genética , Movimento Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Endopeptidases
2.
Clin Epigenetics ; 16(1): 55, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622665

RESUMO

BACKGROUND: CSLCs(Cancer stem cell-like cells), which are central to tumorigenesis, are intrinsically influenced by epigenetic modifications. This study aimed to elucidate the underlying mechanism involving the DNMT1/miR-152-3p/SOS1 axis in regulating the self-renewal and tumor growth of LCSLCs (lung cancer stem-like cells). MATERIALS AND METHODS: Target genes of miR-152-3p were predicted using TargetScan Human 8.0. Self-renewal and tumor growth of LCSLC were compared in suspension-cultured non-small cell lung cancer (NSCLC) cell lines H460 and A549 cell-derived globe cells. Functional effects of the DNMT1/miR-152-3p/SOS1 axis were assessed through gain-of-function experiments in vitro and in vivo. Additionally, luciferase reporter assays were employed to analyze the interaction among DNMT1, miR-152-3p, and SOS1. RESULTS: Our findings highlight a negative interaction between DNMT1 and miR-152-3p, resulting in reduced miR-152-3p level. This, in turn, leads to the alleviation of the inhibitory effect of miR-152-3p on the target gene SOS1, ultimately activating SOS1 and playing an essential role in self-renewal and tumor growth of LCSLC. However, the alteration of SOS1 does not affect DNMT1/miR-152-3p regulation. Therefore, it is reasonable to infer that the DNMT1/miR-152-3p negative feedback loop critically sustains self-renewal and tumor growth of LCSLC through SOS1. CONCLUSIONS: This study reveals a novel mechanism underpinning self-renewal and tumor growth of CSLC (cancer stem cell) in NSCLC and identifies potential therapeutic targets for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
3.
Cancer Sci ; 112(5): 1785-1797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33788346

RESUMO

The pathogenesis and cisplatin chemoresistance of ovarian cancer (OC) are still unclear. Vacuolar protein sorting-associated 33B (VPS33B) has not been reported in OC to date. In this study, immunohistochemistry was used to detect VPS33B protein expression between OC and ovarian tissues. MTT, EdU, colony formation, cell cycle, in vivo tumorigenesis, western blot, ChIP, EMSA, co-immunoprecipitation (CoIP), qRT-PCR, and microconfocal microscopy were used to explore the function and molecular mechanisms of VPS33B in OC cells. The results of the present study demonstrated that VPS33B protein expression was obviously reduced in OC compared with that in ovarian tissues. Overexpressed VPS33B suppressed cell cycle transition, cell growth, and chemoresistance to cisplatin in vitro and in vivo. Analysis of the mechanism indicated that overexpressed VPS33B regulated the epidermal growth factor receptor (EGFR)/PI3K/AKT/c-Myc/p53/miR-133a-3p feedback loop and reduced the expression of the cell cycle factor CDK4. Nasopharyngeal epithelium-specific protein 1 (NESG1) as a tumor suppressor not only interacted with VPS33B, but was also induced by VPS33B by the attenuation of PI3K/AKT/c-Jun-mediated transcription inhibition. Overexpressed NESG1 further suppressed cell growth by mediating VPS33B-modulated signals in VPS33B-overexpressing OC cells. Finally, NESG1 induced VPS33B expression by reducing the inhibition of PI3K/AKT/c-Jun-mediated transcription. Our study is the first to demonstrate that VPS33B serves as a tumor suppressor, and VPS33B can interact with NESG1 to suppress cell growth and promote cisplatin sensitivity by regulating the EGFR/PI3K/AKT/c-Myc/p53/miR-133a-3p feedback loop in OC cells.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Antineoplásicos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA