Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant J ; 117(3): 679-693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921032

RESUMO

During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.


Assuntos
Catequina , Ciclopentanos , Isoleucina/análogos & derivados , Oxilipinas , Transcriptoma , Catequina/análise , Catequina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Melhoramento Vegetal , Chá/química , Chá/metabolismo , Hormônios/análise , Hormônios/metabolismo , Terpenos/metabolismo , Folhas de Planta/metabolismo
2.
Hortic Res ; 10(8): uhad126, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560013

RESUMO

In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.

3.
Front Plant Sci ; 14: 1149182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035086

RESUMO

As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.

4.
Food Res Int ; 166: 112591, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914346

RESUMO

Epigallocatechin-3-gallate (EGCG), a flavoured and healthy compounds in tea, is affected by the ecological factors. However, the biosynthetic mechanisms of EGCG in response to the ecological factors remian unclear. In this study, a response surface method with a Box-Behnken design was used to investigate the relationship between EGCG accumulation and ecological factors; further, integrative transcriptome and metabolome analyses were performed to explore the mechanism underlying EGCG biosynthesis in response to environmental factors. The optimal environmental conditions obtained for EGCG biosynthesis were as follows: 28℃, 70 % relative humidity of the substrate, and 280 µmol·m-2·s-1 light intensity; the EGCG content was increased by 86.83 % compared to the control (CK1). Meanwhile, the order of EGCG content in response to the interaction of ecological factors was as follows: interaction of temperature and light intensity > interaction of temperature and relative humidity of the substrate > interaction of light intensity and relative humidity of the substrate, indicating that temperature was the dominant ecological factors. EGCG biosynthesis in tea plants was found to be comprehensively regulated by a series of structural genes (CsANS, CsF3H, CsCHI, CsCHS, and CsaroDE), miRNAs (miR164, miR396d, miR5264, miR166a, miR171d, miR529, miR396a, miR169, miR7814, miR3444b, and miR5240), and transcription factors (MYB93, NAC2, NAC6, NAC43, WRK24, bHLH30, and WRK70); further, the metabolic flux was regulated and converted from phenolic acid to the flavonoid biosynthesis pathway based on accelerated consumption of phosphoenolpyruvic acid, d-erythrose-4-phosphate, and l-phenylalanine in response to ambient changes in temperature and light intensity. Overall, the results of this study reveal the effect of ecological factors on EGCG biosynthesis in tea plants, providing novel insights for improving tea quality.


Assuntos
Camellia sinensis , Camellia sinensis/química , Transcriptoma , Metaboloma , Chá/química
5.
Foods ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231828

RESUMO

Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.

6.
Front Aging Neurosci ; 14: 967316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158534

RESUMO

Potential health benefits of tea has attracted significant scientific and public attention worldwide. Tea polyphenols are considered as natural promising complementary therapeutical agents for neurodegenerative diseases. However, the anti-neurodegeneration or anti-aging activities of oolong tea polyphenols have not been investigated. The current study aims to document beneficial effects of oolong tea polyphenols [dimers of epigallocatechin gallate (EGCG), oolonghomobisflavan A (OFA), and oolonghomobisflavan B (OFB)] with neuroprotective and neuritogenesis properties in cultured neuronal (Neuro-2a and HT22) cells and Caenorhabditis elegans models. In vitro, we found that the compounds (EGCG, OFA, and OFB) protect against glutamate-induced neurotoxicity via scavenging radical activity, suppression intracellular ROS and up-regulation of antioxidant enzymes. Moreover, the compounds induce neurite outgrowth via up-regulate Ten-4 gene expression. Interestingly, OFA and OFB exert stronger neuroprotective and neurite outgrowth properties than EGCG known as an excellent antioxidant agent in tea. In vivo, we found that the compounds protect against C. elegans Aß-induced paralysis, chemotaxis deficiency and α-synuclein aggregation. Moreover, the compounds are capable of extending the lifespan of C. elegans. OFA and OFB possess both anti-neurodegeneration and anti-aging activities, supporting its therapeutic potential for the treatment of age-related neurodegenerative diseases which need to be studied in more detail in intervention studies.

7.
Food Chem ; 391: 133192, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597038

RESUMO

To interpret the environmental stresses induced dynamic changes of volatile and non-volatile constitutes in oolong tea leaves during enzymatic-catalyzed processes (ECP), metabolomic and proteomic studies were carried out using the processed leaf samples collected at the different stages of ECP for Zhangping Shuixian tea manufacture. Non-processed leaves were applied as control. Out of identified 980 non-volatiles and 157 volatiles, 40 non-volatiles and 8 volatiles were screened out as biomarkers, respectively. The integrated analysis on metabolites-proteins showed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism were significantly enriched and highly correlated to the dynamic changes of key metabolites during ECP stage. A biological pathway network was constructed to illuminate the enzymatic-catalyzed production of critical flavoring compounds, including carbohydrates, amino acids, flavonoids, and volatile phenylpropanoids/benzenoids. The electronic-sensory analyses indicated leaf dehydration and mechanical wounding occurred over the sun-withering and turning-over steps are indispensable to form characteristic flavor of Shuixian tea.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Catálise , Folhas de Planta/química , Proteômica , Chá/química , Compostos Orgânicos Voláteis/análise
8.
BMC Plant Biol ; 21(1): 478, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670494

RESUMO

BACKGROUND: Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS: In the 250 µmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 µmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 µmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS: In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 µmol·m- 2·s- 1 and 350 µmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 µmol·m- 2·s- 1 or 550 µmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.


Assuntos
Camellia sinensis/efeitos da radiação , Catequina/análogos & derivados , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Catequina/efeitos da radiação , Luz , Proteínas de Plantas/genética , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Regulação para Cima
9.
PLoS One ; 16(7): e0254502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34255775

RESUMO

Planting soybeans (Glycine max (L.) Merr.) in tea gardens decreased soil pH in theory but increased it in practice. This controversy was addressed in this study by treating the tea garden soil consecutively with different parts of a soybean cover crop: aboveground soybean (ASB) parts, underground soybean (USB) root residues, and the whole soybean (WSB) plants. In comparison with the control, the soil pH increased significantly after the third ASB and WSB treatments, but there was no significant change in the soil pH in the USB treatment. Concordantly, the soil exchangeable acidity decreased significantly and the soil exchangeable bases increased significantly in the ASB and WSB treatments. The exchangeable acidity increased in the USB treatment, but the amount of the increased acidity was less than that of the increased bases in the ASB treatment, resulting in a net increase in the exchangeable bases in the WSB treatment. Soybean planting and covering also increased the microbial richness and abundance significantly, which led to significantly more soil organic matters. Exchangeable K+ and Mg2+, and soil organic matters played significantly positive roles and exchangeable Al3+ played negative roles in improving soil pH. Our data suggest that consecutive plantings of soybean cover crop increase the pH of the acidified tea garden soil.


Assuntos
Glycine max/metabolismo , Fabaceae/metabolismo , Solo , Poluentes do Solo/metabolismo
10.
Food Funct ; 11(9): 8179-8192, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966472

RESUMO

Oolong tea, a traditional Chinese tea, is especially popular in south China and has a variety of health benefits. However, studies about its neuroprotective and neuroregenerative properties are still limited. This study explored the neuroprotective and neurite outgrowth-promoting properties of oolong tea in cultured neuronal cells (Neuro-2a and HT22) and Caenorhabditis elegans models. Ultra performance liquid chromatography was applied to identify the main natural bioactive compounds in oolong tea. Using Neuro-2a and HT22 cells, we found that oolong tea extracts had a protective effect against glutamate-induced cell death. The extracts reduced intracellular reactive oxygen species accumulation and induced gene expression of cellular antioxidant enzymes such as GPx, GSTs and SODs. These extracts also increased the average neurite length, and GAP-43 and Ten-4 mRNA expression in Neuro-2a cells. Moreover, they had protective effects against Aß-induced paralysis, chemotaxis deficiency and α-synuclein aggregation in C. elegans. This is the first study showing the neuroregenerative and neuroprotective potential of the oolong tea extracts against glutamate/Aß/α-synuclein-induced toxicity in vitro and in vivo. Our study may support oolong tea extracts as potential candidates for the prevention of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Camellia sinensis/química , Ácido Glutâmico/efeitos adversos , Doenças Neurodegenerativas/prevenção & controle , Neurônios/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Chá/química
11.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947902

RESUMO

The NaOH-HCl- and ethanol-pretreated pomelo peel samples were prepared to apply to the batch adsorption for epigallocatechin-3-gallate (EGCG). The characteristics of peel samples were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and a laser particle analyzer. The results of the physiochemical properties of the peel samples demonstrate that these peel samples have a promising adsorption capacity for EGCG, because of the increased potential binding sites on the surface compared with those of untreated peel samples. These two peel samples showed enhanced adsorption capacities of EGCG compared with that of unmodified peel in terms of the isothermal adsorption process, which could be described by both Langmuir and Freundlich models, with the theoretical maximum adsorption capacity of 77.52 and 94.34 mg g-1 for the NaOH-HCl and ethanol-treated peel samples, respectively. The adsorption kinetics demonstrated an excellent fitness to pseudo-second-order, showing that chemisorption was the rate-limiting step. The thermodynamics analysis revealed that the adsorption reaction was a spontaneous and endothermic process. This work highlights that the processed pomelo peels have outstanding adsorption capacities for EGCG, which could be promising candidates for EGCG delivering in functional food application.


Assuntos
Catequina/análogos & derivados , Citrus/química , Adsorção , Catequina/química , Citrus/metabolismo , Frutas/química , Frutas/metabolismo , Cinética , Termodinâmica , Poluentes Químicos da Água/química
12.
Food Chem ; 310: 125941, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31835227

RESUMO

To interpret the enzymatic modulation of the dynamic changes of small molecules in tea leaves during oolong tea manufacturing process, the metabolomic and proteomic studies were performed using processed leaf samples collected at the different manufacturing stages and non-processed fresh leaves as control. As a result, a total of 782 metabolites were identified, of which 46, as the biomarkers, were significantly changed over the manufacturing process. Totally 7245 proteins were qualitatively and quantitativelydetermined. The abundance of multiple enzymes including phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was positively associated with the dynamic changes of their corresponding catalytic products. The overall protein-metabolite association analysis showed that over the enzymatic-catalyzed process production of some non-volatile components, such like carbohydrates, amino acids and flavonoids, were related with the abundance of those responsible proteins in different extents and potentially contributed to the comprehensive flavor of oolong tea.


Assuntos
Camellia sinensis/química , Metaboloma , Proteínas de Plantas/análise , Chá/química , Chá/metabolismo , Enzimas/análise , Flavonoides/análise , Manipulação de Alimentos , Folhas de Planta/química , Proteoma/análise , Proteômica , Paladar
13.
Food Sci Nutr ; 7(8): 2647-2665, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428352

RESUMO

Camellia sinensis (L.) O. Kuntze cv. CFT-1 is an elite tea variety bred by sexual hybridization with a high content of epigallocatechin-3-gallate (EGCG) as 134.2 mg/g (which is 2.54-fold that of the common variety). This study was to evaluate the chemopreventive effects of CFT-1 green tea infusion (CFT-1) against N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis in rats and its mechanisms. The results showed that CFT-1 had a superior inhibitory effect in NDEA-initiated hepatocarcinogenesis compared to that of common tea. CFT-1 significantly reduced the hepatic nodules incidence, size, and number and prevented the hepatic adenoma or hepatocellular carcinoma (HCC) formation. In particular, CFT-1-treated animals had the least incidence of HCC (8.33%) followed by common tea treatment (40.00%) and model control rats (87.50%). CFT-1 treatment significantly ameliorated abnormal liver function enzymes, reduced serum AFP, CEA, TSGF, and TNF-α levels, inhibited the dickkopf-related protein-1 expression, enhanced antioxidant capacity, suppressed the production of livers 8-hydroxy-2'-deoxyguanosine, and regulated hepatic phase I and II xenobiotic-metabolizing enzymes. Transcriptomic analysis of liver tissue suggested that compared to common tea, administration of CFT-1 regulated larger gene sets, which were located in several important pathways of antioxidants, inflammatory network, xenobiotic-metabolizing enzymes, apoptosis, cell proliferation, and metabolism associated with liver tumorigenesis. We identified some genes as potential molecular targets involved in the prevention of CFT-1 and found that CFT-1 inhibited inflammation response, proliferation, and accelerated apoptosis by inhibiting NF-κB and PI3K/Akt pathway. Thus, EGCG-rich CFT-1 green tea might be a potential choice for liver cancer prevention/treatment in the future.

14.
Food Sci Nutr ; 7(1): 339-355, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680188

RESUMO

The World Cancer Research Fund International has released 32 anticancer effects (ACEs) that targeted every stage of cancer processes. Thus, we designed two formulas of natural food combination Diet I and Diet II, mainly produced by elite crop varieties rich in ACEs with different mixture ratios, and evaluated their cancer preventive effects on N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis. After 20 weeks of dietary intervention, Diet I and Diet II reduced incidence, size, and number of hepatic nodules (p < 0.01) and prevented hepatic tumor formation in NDEA-induced hepatocarcinogenesis rats. Low-grade hepatic dysplasia incidence was 20% for Diet II and 40% for Diet I, and apparent hepatocellular carcinomas (HCC) rates were both 0, while 90% HCC in control diet treatment group (p < 0.01). Diet I and Diet II ameliorated abnormal liver function enzymes, reduced serum alpha fetal protein, tumor-specific growth factor, dickkopf-related protein 1, tumor necrosis factor-alpha and interleukin-6 levels, regulated hepatic phase I and II xenobiotic-metabolizing enzymes, enhanced antioxidant capacity, suppressed NDEA-initiated oxidative DNA damage, and induced apoptosis coupled to down-regulation of proinflammatory, invasion, and angiogenesis markers. Daily intake of combination diet produced from ACEs-rich elite crop varieties can effectively prevent or delay occurrence and development of NDEA-induced hepatocarcinogenesis in rats.

15.
J Proteome Res ; 18(1): 252-264, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30427694

RESUMO

The quality of tea is highly related with the maturity of the fresh tea leaves at harvest. The present study investigated the proteomic and transcriptomic profiles of tea leaves with different maturity, using iTRAQ and RNA-seq technologies. A total of 4455 proteins and 27 930 unigenes were identified, with functional enrichment analyses of GO categorization and KEGG annotation. The compositions of flavonoids (catechins and flavonols) in tea leaves were determined. The total content of flavonoids decreased with leaf maturity, in accordance with the protein regulation patterns of shikimate, phenylpropanoid, and flavonoid pathways. The abundance of ANR had a positive correlation with epi-catechin content, while LAR abundance was positively related with catechin content ( P < 0.05). The biosynthetic network of flavonoid biosynthesis was discussed in combination with photosynthesis, primary metabolism, and transcription factors. Bud had the lowest activities of photosynthesis and carbon fixation but the highest flavonoid biosynthesis ability in opposite to mature leaf. SUS-INV switch might be an important joint for carbon flow shifting into the follow-up biochemical syntheses. This work provided a comprehensive overview on the functional protein profile changes of tea leaves at different growing stages and also proposed a research direction regarding the correlations between primary metabolism and flavonoid biosynthesis.


Assuntos
Camellia sinensis/química , Flavonoides/biossíntese , Perfilação da Expressão Gênica/métodos , Folhas de Planta/crescimento & desenvolvimento , Proteômica/métodos , Camellia sinensis/metabolismo , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Chá/normas
16.
J Sci Food Agric ; 98(11): 4135-4141, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29393516

RESUMO

BACKGROUND: Pomelo (Citrus grandis) is the largest citrus fruit, the peel of which is a well-known agricultural wastes. Disposal of pomelo peel after consumption is a serious environment problem. As a natural, versatile bio-absorbent, pomelo peel has shown excellent adsorption capacity for several pollutants, attributed to its micro-pores; however, there is no relevant report on its adsorption capacity for natural products or food ingredients. The ability of pomelo peel to adsorb epigallocatechin-3-gallate (EGCG) was examined in this study. The physicochemical characterizations of pomelo peel were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and high-performance liquid chromatography. The adsorption process of EGCG onto pomelo peel from aqueous solution was carried out at a range of concentrations (50-800 mg L-1 ) and temperatures (25, 40 and 55 °C). RESULTS: The main components of pomelo peel are composed of dietary fiber, which provide sufficient adsorption sites during the adsorption process. The adsorption of EGCG onto pomelo peel showed excellent fitness with a pseudo-second-order model. Both Langmuir and Freundlich models were able to describe the isothermal adsorption of EGCG onto pomelo peel. The results of thermodynamic analysis suggested that adsorption is spontaneous and endothermic in nature, and that the process is likely to be dominated by a physisorption mechanism. CONCLUSION: The results of this study indicate that pomelo peel has potential adsorption capacity for EGCG, which can be used as an effective, low-cost carrier for delivery of natural products in functional food and dietary supplement applications. © 2018 Society of Chemical Industry.


Assuntos
Catequina/análogos & derivados , Citrus/química , Extratos Vegetais/química , Adsorção , Catequina/química , Portadores de Fármacos/química , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Int J Mol Sci ; 18(4)2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422049

RESUMO

Plant anthocyanin biosynthesis is well understood, but the regulatory mechanism in purple foliage tea remains unclear. Using isobaric tag for relative and absolute quantification (iTRAQ), 815 differential proteins were identified in the leaves of Zijuan tea, among which 20 were associated with the regulation of anthocyanin metabolism. We found that the abundances of anthocyanin synthesis-related enzymes such as chalcone synthase, chalcone isomerase, dihydroflavonol 4-reductase and anthocyanin synthetase, as well as anthocyanin accumulation-related UDP-glucosyl transferase and ATP-binding cassette (ABC) transporters in the purple leaves were all significantly higher than those in the green leaves. The abundances of the transcription factors bHLH and HY5, regulating anthocyanin biosynthesis at transcriptional level were also obviously higher in purple leaves than those in green leaves. In addition, bifunctional 3-dehydroquinate dehydratase and chorismate mutase in purple leaves were distinctly higher in abundance compared to green leaves, which provided sufficient phenylalanine substrate for anthocyanin synthesis. Furthermore, lignin synthesis was found to be reduced due to the lower abundances of cinnamoyl-CoA reductase 1, peroxidase 15 and laccase-6, which resulted in increase of intermediates flow into anthocyanin synthesis pathway. The physiological data were consistent with proteomic results. These four aspects of biosynthetic regulation contribute to anthocyanin accumulation in purple leaves of Zijuan tea.


Assuntos
Antocianinas/biossíntese , Folhas de Planta/fisiologia , Chá/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Proteínas de Plantas/biossíntese
18.
PLoS One ; 12(2): e0171173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28225779

RESUMO

MicroRNAs are endogenous non-coding small RNAs playing crucial regulatory roles in plants. Tea, a globally popular non-alcoholic drink, is rich in health-enhancing catechins. In this study, 69 conserved and 47 novel miRNAs targeting 644 genes were identified by high-throughout sequencing. Predicted target genes of miRNAs were mainly involved in plant growth, signal transduction, morphogenesis and defense. To further identify targets of tea miRNAs, degradome sequencing and RNA ligase-mediated rapid amplification of 5'cDNA ends (RLM-RACE) were applied. Using degradome sequencing, 26 genes mainly involved in transcription factor, resistance protein and signal transduction protein synthesis were identified as potential miRNA targets, with 5 genes subsequently verified. Quantitative real-time PCR (qRT-PCR) revealed that the expression patterns of novel-miR1, novel-miR2, csn-miR160a, csn-miR162a, csn-miR394 and csn-miR396a were negatively correlated with catechin content. The expression of six miRNAs (csn-miRNA167a, csn-miR2593e, csn-miR4380a, csn-miR3444b, csn-miR5251 and csn-miR7777-5p.1) and their target genes involved in catechin biosynthesis were also analyzed by qRT-PCR. Negative and positive correlations were found between these miRNAs and catechin contents, while positive correlations were found between their target genes and catechin content. This result suggests that these miRNAs may negatively regulate catechin biosynthesis by down-regulating their biosynthesis-related target genes. Taken together, our results indicate that miRNAs are crucial regulators in tea, with the results of 5'-RLM-RACE and expression analyses revealing the important role of miRNAs in catechin anabolism. Our findings should facilitate future research to elucidate the function of miRNAs in catechin biosynthesis.


Assuntos
Camellia sinensis/metabolismo , Catequina/biossíntese , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Camellia sinensis/genética , MicroRNAs/genética , RNA de Plantas/genética , Análise de Sequência de RNA
19.
Genetics ; 187(4): 1023-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21321134

RESUMO

The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.9×). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Genoma de Inseto , Biblioteca Genômica , Animais , Evolução Biológica , Mapeamento Cromossômico , Genes de Insetos , Filogenia , Análise de Sequência de DNA
20.
J Biomed Biotechnol ; 2011: 476723, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21234344

RESUMO

We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%-87.24%), followed by DNA retrotransposons (11.16%-11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers.


Assuntos
Camellia sinensis/genética , Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Repetições Minissatélites/genética , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA