Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Commun Biol ; 5(1): 274, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347215

RESUMO

The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016-2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum
2.
Parasitol Int ; 80: 102233, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33144194

RESUMO

The Plasmodium vivax variant proteins encoded by vir genes are highly polymorphic antigens and are considered as one of key proteins of P. vivax for host immune evasion via antigenic variations. Because genetic diversity of these antigens is a critical hurdle in the development of an effective vaccine, understanding the genetic nature of the vir genes in natural population is important. In this study, we selected four vir genes (vir 4, vir 12, vir 21, and vir 27) previously used for genetic analysis in several studies and evaluated the genetic polymorphisms and phylogenetic relationship of these 4 vir genes in Myanmar P. vivax population. Taken all genetic diversity values, the vir 12 (S = 168, H = 17, Hd = 0.854, Tajima's D value = 2.91524) was the most genetically diverse gene and the vir 4 (S = 9, H = 4, Hd = 0.744, Tajima's D value = -0.49151) was the most conserved gene. All phylogenetic trees showed two clades, and vir 4 and 12 haplotypes from Myanmar were clustered in a distinct clade with those from India and Republic of Korea. These results confirmed the pattern of high genetic polymorphism of vir genes and provided information on vir gene for further functional research and studies focused toward the practical use of vir genes.


Assuntos
Genes de Protozoários , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Mianmar , Proteínas de Protozoários/metabolismo
3.
Malar J ; 19(1): 388, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138831

RESUMO

BACKGROUND: Malaria rapid diagnostic tests (RDTs) are precious tools to diagnose malaria. Most RDTs used currently are based on the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in a patient's blood. However, concern has been raised in recent years that deletion of pfhrp2 in the parasite could affect the accuracy of PfHRP2-based RDTs. In addition, genetic variation in pfhrp2 might influence the accuracy and sensitivity of RDTs. In this study, the genetic variation in pfhrp2 and pfhrp3 in Myanmar P. falciparum isolates was analysed. METHODS: Blood samples were collected from malaria patients who were infected with P. falciparum in Mandalay, Naung Cho, Tha Beik Kyin, and Pyin Oo Lwin, Upper Myanmar between 2013 and 2015. The pfhrp2 and pfhrp3 were amplified by nested polymerase chain reaction (PCR), cloned and sequenced. Genetic variation in Myanmar pfhrp2 and pfhrp3 was analysed using the DNASTAR program. Comparative analysis of Myanmar and global pfhrp2 and pfhrp3 isolates was also performed. RESULTS: One-hundred and two pfhrp2 and 89 pfhrp3 were amplified from 105 blood samples, of which 84 pfhrp2 and 56 pfhrp3 sequences were obtained successfully. Myanmar pfhrp2 and pfhrp3 showed high levels of genetic variation with different arrangements of distinct repeat types, which further classified Myanmar pfhrp2 and pfhrp3 into 76 and 47 haplotypes, respectively. Novel amino acid changes were also found in Myanmar pfhrp2 and pfhrp3, but their frequencies were very low. Similar structural organization was shared by Myanmar and global pfhrp2 and pfhrp3, and differences in frequencies of repeat types and lengths were also observed between and among global isolates. CONCLUSION: Length polymorphisms and amino acid substitutions generated extensive genetic variation in Myanmar pfhrp2 and pfhrp3. Comparative analysis revealed that global pfhrp2 and pfhrp3 share similar structural features, as well as extensive length polymorphisms and distinct organizations of repeat types. These results provide a better understanding of the genetic structure of pfhrp2 and pfhrp3 in global P. falciparum populations and suggest useful information to develop RDTs with improved quality.


Assuntos
Antígenos de Protozoários/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Mianmar
4.
Am J Trop Med Hyg ; 103(3): 1088-1093, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32524960

RESUMO

Four single-arm, prospective, clinical studies of pyronaridine-artesunate efficacy in uncomplicated Plasmodium falciparum or Plasmodium vivax malaria were conducted in Myanmar between 2017 and 2019. Eligible subjects were aged at least 6 years, with microscopically confirmed P. falciparum (n = 196) or P. vivax mono-infection (n = 206). Patients received pyronaridine-artesunate once daily for 3 days with follow-up until day 42 for P. falciparum or day 28 for P. vivax. For the primary efficacy analysis, adequate clinical and parasitological response (ACPR) in the per-protocol population at day 42 for P. falciparum malaria was 100% (88/88; 95% CI: 95.9, 100) in northern Myanmar (Kachin State and northern Shan State), and 100% (101/101; 95% CI: 96.4, 100) in southern Myanmar (Tanintharyi Region and Kayin State). Plasmodium falciparum day-3 parasite clearance was observed for 96.9% (190/196) of patients. Mutations in the P. falciparum Kelch propeller domain (K13) were detected in 39.0% (69/177) of isolates: F446I (14.7% [26/177]), R561H (13.0% [23/177]), C580Y (10.2% [18/177]), and P574L (1.1% [2/177]). For P. vivax, the day-28 ACPR was 100% (104/104; 95% CI: 96.5, 100) in northern Myanmar and 100% (97/97; 95% CI: 96.3, 100) in southern Myanmar. Across both P. vivax studies, 100% (206/206) of patients had day-3 parasite clearance. There were no adverse events. Pyronaridine-artesunate had excellent efficacy in Myanmar against P. falciparum and P. vivax and was well tolerated. This study supports the inclusion of pyronaridine-artesunate in national malaria treatment guidelines for Myanmar.


Assuntos
Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Naftiridinas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Criança , Quimioterapia Combinada , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Mianmar , Estudos Prospectivos , Adulto Jovem
5.
Malar J ; 19(1): 60, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019541

RESUMO

BACKGROUND: Plasmodium lactate dehydrogenase (pLDH) is a major target in diagnosing the erythrocytic stage of malaria parasites because it is highly expressed during blood-stage parasites and is distinguished from human LDH. Rapid diagnostic tests (RDTs) for malaria use pLDH as a target antigen; however, genetic variations in pLDH within the natural population threaten the efficacy of pLDH-based RDTs. METHODS: Genetic polymorphisms of Plasmodium vivax LDH (PvLDH) and Plasmodium falciparum LDH (PfLDH) in Myanmar isolates were analysed by nucleotide sequencing analysis. Genetic polymorphisms and the natural selection of PvLDH and PfLDH were analysed using DNASTAR, MEGA6, and DnaSP ver. 5.10.00 programs. The genetic diversity and natural selection of global PvLDH and PfLDH were also analysed. The haplotype network of global PvLDH and PfLDH was constructed using NETWORK ver. 5.0.0.3. Three-dimensional structures of PvLDH and PfLDH were built with YASARA Structure ver. 18.4.24 and the impact of mutations on structural change and stability was evaluated with SDM ver. 2, CUPSAT and MAESTROweb. RESULTS: Forty-nine PvLDH and 52 PfLDH sequences were obtained from Myanmar P. vivax and P. falciparum isolates. Non-synonymous nucleotide substitutions resulting in amino acid changes were identified in both Myanmar PvLDH and PfLDH. Amino acid changes were also identified in the global PvLDH and PfLDH populations, but they did not produce structural alterations in either protein. Low genetic diversity was observed in global PvLDH and PfLDH, which may be maintained by a strong purifying selection. CONCLUSION: This study extends knowledge for genetic diversity and natural selection of global PvLDH and PfLDH. Although amino acid changes were observed in global PvLDH and PfLDH, they did not alter the conformational structures of the proteins. These suggest that PvLDH and PfLDH are genetically well-conserved in global populations, which indicates that they are suitable antigens for diagnostic purpose and attractive targets for drug development.


Assuntos
Variação Genética , L-Lactato Desidrogenase/genética , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Plasmodium falciparum/genética , Plasmodium vivax/genética , Sequência de Aminoácidos/genética , Antígenos de Protozoários/sangue , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Cristalização , Saúde Global , Haplótipos , Humanos , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/química , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Conformação Molecular , Mianmar , Plasmodium falciparum/classificação , Plasmodium falciparum/enzimologia , Plasmodium vivax/classificação , Plasmodium vivax/enzimologia , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/sangue , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
6.
Am J Trop Med Hyg ; 102(3): 598-604, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31833468

RESUMO

The emergence of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion threatens both the efficacy of artemisinin-based combination therapy (ACT), the first-line treatment for malaria, and prospects for malaria elimination. Monitoring of ACT efficacy is essential for ensuring timely updates to elimination policies and treatment recommendations. In 2014-2015, we assessed the therapeutic efficacies of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) for the treatment of uncomplicated P. falciparum at three study sites in Rakhine, Shan, and Kachin states in Myanmar. Patients presenting with uncomplicated P. falciparum malaria were enrolled, treated, and followed up for 28 days for AL or 42 days for DP. Both AL and DP demonstrated good therapeutic efficacy at all three study sites. The 28-day cure rate for AL was > 96% across all study sites, and the 42-day cure rate for DP was 100%. Parasitemia on day 3 was detected in 0%, 3.3%, and 3.6% of participants treated with AL at the Rakhine, Shan, and Kachin sites, respectively. No participants treated with DP were parasitemic on day 3. No evidence of P. falciparum k13 mutations was found at the Rakhine study site. A high prevalence of k13 mutations associated with artemisinin resistance was observed at the Kachin and Shan state study sites. These results confirm that ACT efficacy has been resilient in therapeutic efficacy study (TES) sentinel sites in Myanmar, despite the presence at some sites of k13 mutations associated with resistance. Studies are ongoing to assess whether this resilience persists.


Assuntos
Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/uso terapêutico , Adolescente , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Criança , Combinação de Medicamentos , Feminino , Genótipo , Humanos , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Mianmar/epidemiologia , Plasmodium falciparum/genética , Quinolinas/administração & dosagem , Adulto Jovem
7.
Acta Trop ; 198: 105104, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336059

RESUMO

Transmission-blocking vaccines (TBVs) target the sexual stages of malarial parasites to interrupt or reduce the transmission cycle have been one of approaches to control malaria. Pvs25 and Pvs28 are the leading candidate antigens of TBVs against vivax malaria. In this study, genetic diversity and natural selection of the two TBV candidate genes in Plasmodium vivax Myanmar isolates were analyzed. The 62 Myanmar P. vivax isolates showed 9 and 19 different haplotypes for Pvs25 and Pvs28, respectively. The nucleotide diversity of Pvs28 was slightly higher than Pvs25, but not significant. Most amino acid substitutions observed in Myanmar Pvs25 and Pvs28 were concentrated at the EGF-2 and EGF-3 like domains. Major amino acid changes found in Myanmar Pvs25 and Pvs28 were similar to those reported in the global population, but novel amino acid substitutions were also identified. Negative selection was predicted in Myanmar Pvs25, whereas Pvs28 was under positive selection. Comparative analysis of global Pvs25 and Pvs28 suggests a substantial geographical difference between the Asian and American/African Pvs25 and Pvs28. The geographical genetic differentiation and the evidence for natural selection in global Pvs25 and Pvs28 suggest that the functional consequences of the observed polymorphism need to be considered for the development of effective TBVs based on the antigens.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Seleção Genética , Substituição de Aminoácidos , Antígenos de Protozoários/imunologia , Antígenos de Superfície , DNA de Protozoário/genética , Haplótipos , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Mianmar/epidemiologia , Polimorfismo Genético
8.
Korean J Parasitol ; 57(3): 303-308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31284355

RESUMO

Toxoplasma gondii is an apicomplexan parasite that can cause toxoplasmosis in a wide range of warm-blooded animals including humans. In this study, we analyzed seroprevalence of T. gondii among 467 school children living in the rural areas of Pyin Oo Lwin and Naung Cho, Myanmar. The overall seroprevalence of T. gondii among school children was 23.5%; 22.5% of children were positive for T. gondii IgG, 0.4% of children were positive for T. gondii IgM, and 0.6% of children were positive for both T. gondii IgG and IgM. Geographical factors did not significantly affect the seroprevalence frequency between Pyin Oo Lwin and Naung Cho, Myanmar. No significant difference was found between males (22.2%) and females (25.0%). The overall seroprevalence among school children differed by ages (10 years old [13.6%], 11-12 years old [19.8%], 13-14 years old [24.6%], and 15-16 years old [28.0%]), however, the result was not significant. Polymerase chain reaction analysis for T. gondii B1 gene for IgG-positive and IgM-positive blood samples were negative, indicating no direct evidence of active infection. These results collectively suggest that T. gondii infection among school children in Myanmar was relatively high. Integrated and improved strategies including reinforced education on toxoplasmosis should be implemented to prevent and control T. gondii infection among school children in Myanmar.


Assuntos
Toxoplasma/isolamento & purificação , Toxoplasmose/sangue , Toxoplasmose/epidemiologia , Adolescente , Anticorpos Antiprotozoários/sangue , Criança , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Mianmar/epidemiologia , Estudos Soroepidemiológicos , Estudantes/estatística & dados numéricos , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/parasitologia
9.
Malar J ; 17(1): 361, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30314440

RESUMO

BACKGROUND: Plasmodium falciparum circumsporozoite protein (PfCSP) is one of the most extensively studied malaria vaccine candidates, but the genetic polymorphism of PfCSP within and among the global P. falciparum population raises concerns regarding the efficacy of a PfCSP-based vaccine efficacy. In this study, genetic diversity and natural selection of PfCSP in Myanmar as well as global P. falciparum were comprehensively analysed. METHODS: Blood samples were collected from 51 P. falciparum infected Myanmar patients. Fifty-one full-length PfCSP genes were amplified from the blood samples through a nested polymerase chain reaction, cloned into a TA cloning vector, and then sequenced. Polymorphic characteristics and natural selection of Myanmar PfCSP were analysed using the DNASTAR, MEGA6, and DnaSP programs. Polymorphic diversity and natural selection in publicly available global PfCSP were also analysed. RESULTS: The N-terminal and C-terminal non-repeat regions of Myanmar PfCSP showed limited genetic variations. A comparative analysis of the two regions in global PfCSP displayed similar patterns of low genetic diversity in global population, but substantial geographic differentiation was also observed. The most notable polymorphisms identified in the N-terminal region of global PfCSP were A98G and 19-amino acid length insertion in global population with different frequencies. Major polymorphic characters in the C-terminal region of Myanmar and global PfCSP were found in the Th2R and Th3R regions, where natural selection and recombination occurred. The central repeat region of Myanmar PfCSP was highly polymorphic, with differing numbers of repetitive repeat sequences NANP and NVDP. The numbers of the NANP repeats varied among global PfCSP, with the highest number of repeats seen in Asian and Oceanian PfCSP. Haplotype network analysis of global PfCSP revealed that global PfCSP clustered into 103 different haplotypes with geographically-separated populations. CONCLUSION: Myanmar and global PfCSP displayed genetic diversity. N-terminal and C-terminal non-repeat regions were relatively conserved, but the central repeat region displayed high levels of genetic polymorphism in Myanmar and global PfCSP. The observed geographic pattern of genetic differentiation and the points of evidence for natural selection and recombination suggest that the functional consequences of the polymorphism should be considered for developing a vaccine based on PfCSP.


Assuntos
Malária Falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , Mianmar , Proteínas de Protozoários/metabolismo
10.
Parasit Vectors ; 11(1): 455, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081943

RESUMO

BACKGROUND: The C-terminal 42 kDa region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-142) is the target of an immune response. It has been recognised as one of the promising candidate antigens for a blood-stage malaria vaccine. Genetic structure of PfMSP-142 has been considered to be largely conserved in the P. falciparum population. However, only limited information is currently available. This study aimed to analyse genetic diversity and the effect of natural selection on PfMSP-142 among the Myanmar P. falciparum population and compare them with publicly available PfMSP-142 from global P. falciparum populations. METHODS: A total of 69 P. falciparum clinical isolates collected from Myanmar malaria patients in Upper Myanmar in 2015 were used. The PfMSP-142 region was amplified by polymerase chain reaction, cloned and sequenced. Genetic structure and natural selection of this region were analysed using MEGA4 and DnaSP programs. Polymorphic nature and natural selection in global PfMSP-142 were also investigated. RESULTS: All three allele types (MAD20, K1, and RO33) of PfMSP-142 were identified in Myanmar isolates of P. falciparum. Myanmar PfMSP-142 displayed genetic diversity. Most polymorphisms were scattered in blocks 16 and 17. Polymorphisms observed in Myanmar PfMSP-142 showed a similar pattern to those of global PfMSP-142; however, they were not identical to each other. Genetic diversity of Myanmar PfMSP-142 was relatively lower than that of PfMSP-142 from different geographical regions. Evidence of natural selection and recombination were found. Comparative analysis of genetic polymorphism and natural selection in the global PfMSP-142 population suggested that this region was not tightly conserved in global PfMSP-142 as previously thought and is under the complicated influence of natural selection and recombination. CONCLUSIONS: Global PfMSP-142 revealed limited, but non-negligible, genetic diversity by allele types and geographical origins. Complicated natural selection and potential recombination might have occurred in global PfMSP-142. Comprehensive monitoring of genetic diversity for global PfMSP-142 would be needed to better understand the polymorphic nature and evolutionary aspect of PfMSP-142 in the global P. falciparum population. More thought would be necessary for designing a vaccine based on PfMSP-142.


Assuntos
Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Adolescente , Adulto , Saúde Global , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Mianmar/epidemiologia , Seleção Genética , Adulto Jovem
11.
BMC Infect Dis ; 18(1): 131, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548282

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked recessive hereditary disorders in the world. Primaquine (PQ) has been used for radical cure of P. vivax to prevent relapse. Recently, it is also used to reduce P. falciparum gametocyte carriage to block transmission. However, PQ metabolites oxidize hemoglobin and generate excessive reactive oxygen species which can trigger acute hemolytic anemia in malaria patients with inherited G6PD deficiency. METHODS: A total of 252 blood samples collected from malaria patients in Myanmar were used in this study. G6PD variant was analysed by a multiplex allele specific PCR kit, DiaPlexC™ G6PD Genotyping Kit [Asian type]. The accuracy of the multiplex allele specific PCR was confirmed by sequencing analysis. RESULTS: Prevalence and distribution of G6PD variants in 252 malaria patients in Myanmar were analysed. Six different types of G6PD allelic variants were identified in 50 (7 females and 43 males) malaria patients. The predominant variant was Mahidol (68%, 34/50), of which 91.2% (31/34) and 8.8% (3/34) were males and females, respectively. Other G6PD variants including Kaiping (18%, 9/50), Viangchan (6%, 3/50), Mediterranean (4%, 2/50), Union (2%, 1/50) and Canton (2%, 1/50) were also observed. CONCLUSIONS: Results of this study suggest that more concern for proper and safe use of PQ as a radical cure of malaria in Myanmar is needed by combining G6PD deficiency test before PQ prescription. Establishment of a follow-up system to monitor potential PQ toxicity in malaria patients who are given PQ is also required.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Malária/enzimologia , Malária/epidemiologia , Adolescente , Adulto , Alelos , Povo Asiático/genética , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Malária/sangue , Malária/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Mianmar/epidemiologia , Prevalência , Primaquina/efeitos adversos , Primaquina/uso terapêutico , Adulto Jovem
12.
Malar J ; 17(1): 71, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415731

RESUMO

BACKGROUND: Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. METHODS: Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. RESULTS: Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. CONCLUSIONS: Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the strong selective pressure of host immunity on the PfAMA-1 gene. These results have significant implications in understanding the nature of Myanmar PfAMA-1 along with global PfAMA-1. They also provide useful information for the development of effective malaria vaccine based on this antigen.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética , Adolescente , Adulto , Sequência de Aminoácidos , Antígenos de Protozoários/química , Haplótipos , Humanos , Proteínas de Membrana/química , Pessoa de Meia-Idade , Mianmar , Proteínas de Protozoários/química , Adulto Jovem
13.
Malar J ; 16(1): 143, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388902

RESUMO

BACKGROUND: In Myanmar, three types of artemisinin-based combination therapy (ACT) are recommended as first-line treatment of uncomplicated falciparum malaria: artemether-lumefantrine (AL), artesunate-mefloquine (AS + MQ), and dihydroartemisinin-piperaquine (DP). Resistance to both artemisinins and ACT partner drugs has been reported from the Greater Mekong Sub-region, and regular efficacy monitoring of the recommended ACT is conducted in Myanmar. This paper reports on results from studies to monitor the efficacy of the three forms of ACT in sentinel sites in northern Myanmar, and investigations of mutations in the Kelch13 (k13) propeller domain. METHODS: Seven therapeutic efficacy studies were conducted in 2011-12 and 2014 in three sentinel sites in Myanmar (Tamu, Muse, Tabeikkyin). Three studies were done for the evaluation of AL (204 patients), two studies for AS + MQ (119 patients) and two studies for DP (147 patients). These studies were done according to 2009 standard WHO protocol. Polymorphisms in the k13 propeller domain were examined in dried blood spots collected on day 0. The primary endpoint was adequate clinical and parasitological response (ACPR) on day 28 for AL and on day 42 for DP and AS + MQ, corrected to exclude re-infection using polymerase chain reaction (PCR) genotyping. Safety data were collected through self-reporting. RESULTS: PCR-corrected ACPR was 97.2-100% for AL, 98.6-100% for AS + MQ and 100% for DP across the study sites and years. All studies found a prevalence of k13 mutations (>440) above 23% in the day-0 samples. The F446I mutation was the most common mutation, making up 66.0% of the mutations found. Seven out of nine day-3 positive patients were infected with k13 wild type parasites. The remaining two cases with day-3 parasitaemia had the P574L mutation. CONCLUSIONS: The efficacy of AL, AS + MQ and DP remains high in northern Myanmar despite widespread evidence of k13 mutations associated with delayed parasite clearance. This study showed that already in 2012 there was a high frequency of k13 mutations in Myanmar on the border with India. The high efficacy of the recommended ACT gives confidence in the continued recommendation of the use of these treatments in Myanmar. Trial registration numbers ACTRN12611001245987 (registered 06-12-2011) and ACTRN12614000216617 (registered 28-02-2014).


Assuntos
Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , DNA de Protozoário/química , DNA de Protozoário/genética , Quimioterapia Combinada/métodos , Feminino , Genes de Protozoários , Humanos , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Mianmar , Plasmodium/genética , Plasmodium/isolamento & purificação , Polimorfismo Genético , Estudos Prospectivos , Análise de Sequência de DNA , Resultado do Tratamento , Adulto Jovem
14.
Malar J ; 16(1): 119, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302168

RESUMO

BACKGROUND: Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. METHODS: A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. RESULTS: Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. CONCLUSIONS: The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.


Assuntos
Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Microscopia/normas , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase/normas , Humanos , Mianmar , Reprodutibilidade dos Testes
15.
N Engl J Med ; 374(25): 2453-64, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27332904

RESUMO

BACKGROUND: Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS: We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS: We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS: No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/genética , Lactonas/farmacologia , Mutação , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Algoritmos , Artemisininas/uso terapêutico , Sudeste Asiático , China , Doenças Endêmicas , Genótipo , Humanos , Lactonas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Análise de Sequência de DNA
16.
Lancet Infect Dis ; 15(4): 415-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704894

RESUMO

BACKGROUND: Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. METHODS: We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. FINDINGS: Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. INTERPRETATION: Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. FUNDING: Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Bangladesh/epidemiologia , Estudos Transversais , DNA de Protozoário/química , DNA de Protozoário/genética , Marcadores Genéticos , Genótipo , Malária Falciparum/epidemiologia , Mutação , Mianmar/epidemiologia , Filogeografia , Prevalência , Análise de Sequência de DNA , Tailândia/epidemiologia
17.
Malar J ; 11: 60, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22380592

RESUMO

BACKGROUND: Plasmodium vivax Duffy binding protein (PvDBP) plays an essential role in erythrocyte invasion and a potential asexual blood stage vaccine candidate antigen against P. vivax. The polymorphic nature of PvDBP, particularly amino terminal cysteine-rich region (PvDBPII), represents a major impediment to the successful design of a protective vaccine against vivax malaria. In this study, the genetic polymorphism and natural selection at PvDBPII among Myanmar P. vivax isolates were analysed. METHODS: Fifty-four P. vivax infected blood samples collected from patients in Myanmar were used. The region flanking PvDBPII was amplified by PCR, cloned into Escherichia coli, and sequenced. The polymorphic characters and natural selection of the region were analysed using the DnaSP and MEGA4 programs. RESULTS: Thirty-two point mutations (28 non-synonymous and four synonymous mutations) were identified in PvDBPII among the Myanmar P. vivax isolates. Sequence analyses revealed that 12 different PvDBPII haplotypes were identified in Myanmar P. vivax isolates and that the region has evolved under positive natural selection. High selective pressure preferentially acted on regions identified as B- and T-cell epitopes of PvDBPII. Recombination may also be played a role in the resulting genetic diversity of PvDBPII. CONCLUSIONS: PvDBPII of Myanmar P. vivax isolates displays a high level of genetic polymorphism and is under selective pressure. Myanmar P. vivax isolates share distinct types of PvDBPII alleles that are different from those of other geographical areas. These results will be useful for understanding the nature of the P. vivax population in Myanmar and for development of PvDBPII-based vaccine.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Seleção Genética , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/genética , Escherichia coli/genética , Humanos , Malária Vivax/parasitologia , Dados de Sequência Molecular , Mianmar , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
18.
Malar J ; 10: 228, 2011 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-21819610

RESUMO

BACKGROUND: The aim of this study was to investigate the profile of antibodies against several antigens of Plasmodium vivax and Plasmodium falciparum in Mandalay, Myanmar. METHODS: Malaria parasites were identified by microscopic examination. To test the antibodies against P. vivax and P. falciparum in sera, an indirect immunofluorescence antibody test (IFAT) was performed using asexual blood parasite antigens. An enzyme-linked immunosorbent assay (ELISA) was performed with circumsporozoite protein (CSP), Pvs25 and Pvs28 recombinant proteins of transmission-blocking vaccine candidates for P. vivax, and liver stage specific antigen-1 and -3 (PfLSA-1, PfLSA-3) for P. falciparum. RESULTS: Fourteen patients among 112 were found to be infected with P. vivax and 26 with P. falciparum by thick smear examination. Twenty-three patients were found to be infected with P. vivax, 19 with P. falciparum and five with both by thin smear examination. Blood samples were divided into two groups: Group I consisted of patients who were positive for infection by microscopic examination, and Group II consisted of those who showed symptoms, but were negative in microscopic examination. In P. falciparum, IgG against the blood stage antigen in Group I (80.8%) was higher than in Group II (70.0%). In P. vivax, IgG against the blood stage antigen in Group I (53.8%) was higher than in Group II (41.7%). However, the positivity rate of the PvCSP VK210 subtype in Group II (40.0%) was higher than in Group I (23.1%). Similarly for the PvCSP VK247 subtype, Group II (21.7%) was higher than that for Group I (9.6%). A similar pattern was observed in the ELISA using Pvs25 and Pvs28: positive rates of Group II were higher than those for Group I. However, those differences were not shown significant in statistics. CONCLUSIONS: The positive rates for blood stage antigens of P. falciparum were higher in Group I than in Group II, but the positive rates for antigens of other stages (PfLSA-1 and -3) showed opposite results. Similar to P. falciparum, the positive rate of pre-blood stage (CSP VK210 and 247 subtype) and post-blood stage (Pvs25 and 28) antigens of P. vivax were higher in Group II than in Group I. Therefore, sero-diagnosis is not helpful to discriminate between malaria patients and symptomatic individuals during the epidemic season in Myanmar.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoglobulina G/sangue , Microscopia , Mianmar , Sensibilidade e Especificidade
19.
Parasitol Res ; 108(5): 1275-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21318386

RESUMO

Plasmodium vivax is classified into two serotypes, VK210 [the dominant form-GDRA(D/A)GQPA repeats] and VK247 [the variant form-ANGA(G/D)(N/D)QPG repeats], based on sequence variation of the repeat region of the circumsporozoite (CS) protein gene. Genomic DNA for the variant CS protein gene was obtained from field isolate strains in Myanmar. The repetitive region has highly 19 immunogenic repeats flanked by non-repeat stretches of amino acids. The sequence including this region (717 bp) was subcloned into the expression vector pQE30 and expressed in Escherichia coli. The expressed recombinant protein has a molecular weight of about 50 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Anti-VK247 antibodies were found in malaria patients who have been exposed to variant form of P. vivax in western blot analysis. Therefore, this recombinant protein might be a useful tool in serodiagnosis of malaria patients who have been infected with variant form of P. vivax.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Vivax/diagnóstico , Parasitologia/métodos , Plasmodium vivax/imunologia , Proteínas de Protozoários , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Expressão Gênica , Humanos , Malária Vivax/parasitologia , Peso Molecular , Mianmar , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Testes Sorológicos/métodos
20.
Acta Trop ; 117(2): 69-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20933490

RESUMO

Treatment failure of chloroquine for Plasmodium vivax infection has increased in endemic countries. However, the molecular mechanisms for resistance and in vitro susceptibility of P. vivax to chloroquine remain elusive. We investigated the prevalence of mutations in the pvmdr1 and pvcrt-o genes, and the copy number of the pvmdr1 gene in isolates from the Republic of Korea (ROK), Thailand, the Union of Myanmar (Myanmar), and Papua New Guinea (PNG). We also measured in vitro susceptibility of Korean isolates to antimalarial drugs. The pvmdr1 analysis showed that mutations at amino acid position Y976F of pvmdr1 were found in isolates from Thailand (17.9%), Myanmar (13.3%), and PNG (100%), but none from the ROK, and mutation at position F1076L was present in isolates from the ROK (100%), Thailand (60.7%), and Myanmar (46.7%). One copy of the pvmdr1 gene was observed in most isolates and double copy numbers of the gene were observed in two Thai isolates. In the exons of the pvcrt-o gene that were sequenced, a K10 insertion was present in isolates from Thailand (56.0%) and Myanmar (46.2%), and the wild type was found in all Korean isolates. The results suggest that gene polymorphisms and copy number variation was observed in isolates of P. vivax from Southeast Asian countries. In Korean isolates polymorphism as limited to the F1076L variant, and no isolates with high level of resistance were found by in vitro susceptibility determinations. Moreover, our results provide a baseline for future prospective drug studies in malaria-endemic areas.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Animais , Antimaláricos/farmacologia , Primers do DNA , Humanos , Malária Vivax/sangue , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Mianmar , Papua Nova Guiné , Plasmodium vivax/efeitos dos fármacos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , República da Coreia , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA