Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11924-11931, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625035

RESUMO

Ln3+-doped (Ln = lanthanide) nanocrystals are garnering strong interest for their potential as optical materials in various applications. For that reason, a thorough understanding of photophysical processes and ways to tune them in these materials is of great importance. This study, using Eu3+-doped Sr2YF7 as a well-suited model system, underscores the (not unexpected) significance of surface site occupation of Ln3+ and also challenges the prevailing views about their contribution to the luminescence of the system. High-temperature cation exchange and epitaxial shell growth allow nanocrystals to exclusively feature Eu3+ residing at the surface or in the interior, thereby separating their spectral responses. Meticulous experiments reveal that nanocrystals with high doping concentrations exhibit luminescence primarily from surface Eu3+, in contrast to the popular belief that luminescence from surface Ln3+ is largely negligible. The present study shows, on the one hand, the necessity to revise common ideas and also reveals the potential for manipulating the luminescence of such materials through an, until now, unperceived way of surface engineering.

2.
Inorg Chem ; 60(4): 2219-2227, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33507746

RESUMO

Materials with near-infrared (NIR) persistent luminescence (PersL) and NIR-to-NIR photostimulated luminescence (PSL) properties are attractive platforms for photonic energy harvesting and release. In this work, we develop Mg2SnO4:Cr as a broadband NIR PersL and NIR-to-NIR PSL material (luminescence maxima at ∼800 nm) and reveal the origin of the PersL and PSL properties. The material has an inverse spinel structure with the Mg2+ and Sn4+ disorder at the Wyckoff 16d site based on the Rietveld refinement. Cr K-edge X-ray absorption near-edge structure (XANES) spectra uncover that the doped Cr ions have a +3 valence state and occupy the disordered (Mg,Sn) site with octahedral coordination. The disorder results in multiple Cr3+ centers, and the broadband luminescence originates from the 4T2(4F) → 4A2 transition of Cr3+ at sites with intermediate crystal field strength. The distribution of trap depths is continuous according to the analysis of thermoluminescence (TL) spectra using the initial rising method, which relates to the random distribution of Mg2+ and Sn4+ at the second coordination sphere of the Cr3+ centers rather than the oxygen-related defects. Stimulating the material with a NIR laser, the NIR PersL gets significantly enhanced due to a PSL process. The broadband PersL and PSL are detectable beyond 100 h and have good tissue penetrability and therefore the developed Mg2SnO4:Cr3+ has potential in applications of optical information storage/reading and autofluorescence-free bioimaging. Finally, three crystal and electronic structure factors are proposed for screening new Cr3+-activated PersL and PSL materials.

3.
Inorg Chem ; 58(15): 9698-9705, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31283195

RESUMO

High-sensitivity and wide-linear-range thermoluminescence dosimeter (TLD) is of importance for detecting high-dose radiation in industry, medicine, and agriculture as well as materials and food processing. In this work, we synthesize a series of LiMgPO4 doped with Tm3+, Tb3+, and B3+ via a high-temperature solid-state reaction technique. To observe the effect of dopants, we first investigate the structure by Rietveld refinement of high-quality X-ray diffraction (XRD) data and then study the thermoluminescence (TL) properties of samples radiated by ß-rays in detail. The TL signal of LiMgPO4:Tm,Tb,B is originated from Tm3+ 4f-4f transitions. The kinetic parameters are obtained through fitting the TL glow curve based on the general-order kinetics model, revealing that the dominant TL peak at ∼323 °C is related to ∼1.49 eV trap. Through constructing the vacuum-referred binding energy (VRBE) scheme, we uncover that this deep trap mainly originates from the Tb3+ dopant acted as the captured center of free hole. After codoping 0.6% B3+, the sensitivity of sample as TLD increases ∼170%. According to the radiation dose-dependent TL intensities, the sensitivity of LiMgPO4:Tm,Tb,B is about 200% larger than that of the commercial LiF:Mg,Cu,P at 0.08 Gy, and more sensitive at higher dose. Moreover, the studied sample has wider linear range (up to 10 000 Gy) toward high-dose side, good reproducibility (RSD ∼ 4.6%), and weak fading (∼8% after 34 days), and therefore has potential application as TLD for monitoring high-dose radiation.

4.
Inorg Chem ; 57(12): 7090-7096, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863341

RESUMO

Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu2+ for the two distinct types of alkaline earth (AE) sites in Ba1.9995- xSr xEu0.0005SiO4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu2+ 4f7 ground level position, the improved thermal stability of Eu2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.

5.
Inorg Chem ; 57(3): 1116-1124, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303560

RESUMO

Investigation of optical properties of Ce3+-activated phosphors is not only of practical importance for various applications but also of fundamental importance for providing a basis to understand relevant properties of other lanthanide ions in the same host. We report herein a combined experimental and theoretical study of optical properties of Ce3+ in Li4SrCa(SiO4)2. Photoluminescence properties of the material prepared by a solid-state reaction method are investigated with excitation energies in the vacuum-ultraviolet (VUV) to ultraviolet (UV) range at low temperatures. The band maxima in the excitation spectra are assigned with respect to 4f → 5d transitions of Ce3+ at the Sr and Ca sites, from comparison between experimental and ab initio predicted transition energies. As a result of the two-site occupation, the material displays luminescence at 300-500 nm with a high thermal quenching temperature (>500 K), consistent with the calculated large gaps (∼1.40 eV) between the emitting 5d levels and the bottom of the host conduction band. On the basis of experimental and calculated results for Ce3+ in Li4SrCa(SiO4)2, the energy-level diagram for the 4f ground states and the lowest 5d states of all trivalent and divalent lanthanide ions at the Sr and Ca sites of the same host is constructed and discussed in association with experimental findings.

6.
Dalton Trans ; 47(2): 306-313, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29177278

RESUMO

A series of Ln-doped KSrPO4 (Ln = Ce3+, Eu3+, Eu2+, Pr3+) phosphors are prepared through a high-temperature solid-state method. The KSrPO4 compound is confirmed to possess a ß-K2SO4 structure with the Pnma group by Rietveld refinement, and the temperature-dependent lattice parameters are investigated with the powder X-ray diffraction results at different temperatures. Ce3+ and Eu3+ ions are introduced to probe the crystal field strength (CFS) and the lanthanide site symmetry by using VUV-UV-vis spectroscopy. The temperature-dependent luminescence properties of KSrPO4: Ce3+/Eu2+ exhibit an excellent thermal stability of Ce3+/Eu2+ luminescence. Based on the VUV-UV-vis spectra of Ce3+ and Eu3+ doped KSrPO4, the vacuum referred binding energy (VRBE) scheme is constructed to understand the redox properties of Eu, the 5d energy levels of Pr3+ and the thermal quenching characteristics of Ce3+ and Eu2+ luminescence.

7.
Inorg Chem ; 56(20): 12476-12484, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28952724

RESUMO

A series of Ce3+-doped (Ca,Sr)2Al2SiO7 phosphors with different Ce3+ and Ca2+/Sr2+ concentrations were prepared by a high temperature solid-state reaction technique. To get insight into the structure-luminescence relationship, the impact of incorporation of Sr2+ on structure of (Ca,Sr)2Al2SiO7 was first investigated via Rietveld refinement of high quality X-ray diffraction (XRD) data, and then the VUV-UV excitation and UV-vis emission spectra of (Ca,Sr)2Al2SiO7:Ce3+ were collected at low temperature. The results reveal that the crystal structure evolution of (Ca,Sr)2Al2SiO7:Ce3+ has influences on band gaps and Ce3+ luminescence properties including 4f-5di (i = 1-5) transition energies, radiative lifetime, emission intensity, quantum efficiency, and thermal stability. Moreover, the influence of Sr2+ content on the energy of Eu3+-O2- charge-transfer states (CTS) in (Ca,Sr)2Al2SiO7:Eu3+ was studied in order to construct vacuum referred binding energy (VRBE) schemes with the aim to further understand the luminescence properties of (Ca,Sr)2Al2SiO7:Ce3+. Finally, X-ray excited luminescence (XEL) spectra were measured to evaluate the possibility of (Ca,Sr)2Al2SiO7:Ce3+ as a scintillation material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA