Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Pharmacol ; 15: 1415844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966558

RESUMO

Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, ß-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.

2.
Drug Des Devel Ther ; 18: 1997-2020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855536

RESUMO

The potential anti-cancer effect of traditional Chinese medicine (TCM) monomers has been widely studied due to their advantages of well-defined structure, clear therapeutic effects, and easy quality control during the manufacturing process. However, clinical trial information on these monomers is scarce, resulting in a lack of knowledge regarding the research progress, efficacy, and adverse reactions at the clinical stage. Therefore, this study systematically reviewed the clinical trials on the anti-cancer effect of TCM monomers registered in the Clinicaltrials.gov website before 2023.4.30, paying special attention to the trials on tumors, aiming to explore the research results and development prospects in this field. A total of 1982 trials were started using 69 of the 131 TCM monomers. The number of clinical trials performed each year showed an overall upward trend. However, only 26 monomers entered into 519 interventional anti-tumor trials, with vinblastine (194, 37.38%) and camptothecin (146, 28.13%) being the most used. A total of 45 tumors were studied in these 519 trials, with lymphoma (112, 21.58%) being the most frequently studied. Clinical trials are also unevenly distributed across locations and sponsors/collaborators. The location and the sponsor/collaborator with the highest number of performed trials were the United States (651,32.85%) and NIH (77). Therefore, China and its institutions still have large room for progress in promoting TCM monomers in anti-tumor clinical trials. In the next step, priority should be given to the improvement of the research and development ability of domestic enterprises, universities and other institutions, using modern scientific and technological means to solve the problems of poor water solubility and strong toxic and side effects of monomers, so as to promote the clinical research of TCM monomers.


Assuntos
Ensaios Clínicos como Assunto , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Am J Chin Med ; 52(4): 1087-1135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38864547

RESUMO

Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.


Assuntos
Flavonoides , Prenilação , Sophora , Sophora/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Humanos , Relação Estrutura-Atividade , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Animais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fitoterapia , Sophora flavescens
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2117-2127, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812227

RESUMO

Piperlongumine(PL), a natural alkaloid extracted from Piperis Longi Fructus, has attracted much attention in recent years because of its strong anti-tumor activity, little toxicity to normal cells, and excellent sensitizing effect combined with chemotherapy and radiotherapy, which endow PL with unique advantages as an anti-tumor drug. However, similar to other alkaloids, PL has low water solubility and poor bioavailability. To improve the application of PL in the clinical treatment of tumors, researchers have constructed various nano-drug delivery systems to increase the efficiency of PL delivery. This paper reviewed the physicochemical properties, anti-tumor mechanism, combined therapies, and nano-drug delivery systems of PL in recent years. The review aimed to provide a reference for further research on the anti-tumor effect and nano-drug delivery system of PL. Moreover, this review is expected to provide a reference for the development and application of PL in the anti-tumor therapies.


Assuntos
Dioxolanos , Neoplasias , Dioxolanos/química , Humanos , Animais , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Piperidonas
5.
Nat Chem ; 16(6): 871-880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594366

RESUMO

Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.

6.
Adv Drug Deliv Rev ; 209: 115325, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38670229

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by an inflammatory microenvironment and cartilage erosion within the joint cavity. Currently, antirheumatic agents yield significant outcomes in RA treatment. However, their systemic administration is limited by inadequate drug retention in lesion areas and non-specific tissue distribution, reducing efficacy and increasing risks such as infection due to systemic immunosuppression. Development in local drug delivery technologies, such as nanostructure-based and scaffold-assisted delivery platforms, facilitate enhanced drug accumulation at the target site, controlled drug release, extended duration of the drug action, reduced both dosage and administration frequency, and ultimately improve therapeutic outcomes with minimized damage to healthy tissues. In this review, we introduced pathogenesis and clinically used therapeutic agents for RA, comprehensively summarized locally administered nanostructure-based and scaffold-assisted drug delivery systems, aiming at improving the therapeutic efficiency of RA by alleviating the inflammatory response, preventing bone erosion and promoting cartilage regeneration. In addition, the challenges and future prospects of local delivery for clinical translation in RA are discussed.


Assuntos
Antirreumáticos , Artrite Reumatoide , Sistemas de Liberação de Medicamentos , Humanos , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/administração & dosagem , Antirreumáticos/uso terapêutico , Animais , Nanoestruturas/administração & dosagem , Preparações de Ação Retardada
7.
J Ethnopharmacol ; 326: 117990, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38423412

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine prescription for treating ulcerative colitis (UC). However, its potential mechanism of action is still unclear. AIM OF THE STUDY: Reveal the correlation between the beneficial impacts of BXD on UC and the composition of the gut microbiota. MATERIALS AND METHODS: The major constituents of BXD were identified using the HPLC-DAD technique. An experimental model of UC was induced in male C57BL/6 mice by administering dextran sodium sulfate (DSS). A total of 48 mice were divided into different groups, including control, model, high-dose BXD treatment, medium-dose BXD treatment, low-dose BXD treatment, and a group treated with 5-amino acid salicylic acid (5-ASA). Body weight changes and disease activity index (DAI) scores were documented; colon length, colon index, spleen index, and thymus index scores were determined; myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) activities were assessed; and histological staining with hematoxylin-eosin and alcian blue/phosphate Schiff was performed. The immunofluorescence technique was employed to examine the presence of ZO-1 and occludin in the colon tissue. 16S rRNA sequencing was employed to assess the gut microbiota's diversity and metabolomics was utilized to examine alterations in metabolites within the gut microbiota. The impact of BXD on the gut microbiota was confirmed through fecal microbiota transplantation (FMT). RESULTS: BXD exhibited a positive impact on UC mice, particularly in the high-dose BXD treatment group. The BXD group experienced weight recovery, decreased DAI scores, improved colon length, and restored of spleen and thymus index scores compared to the DSS group. Additionally, BXD alleviated colon damage and the inflammatory response while restoring intestinal barrier function. FMT in BXD-treated mice also showed therapeutic effects in UC mice. At the phylum level, the relative abundance of Desulfobacterota, Deferribacterota and Actinobacteriota increased; at the genus level, g__norank__f__Muribaculaceae, Dubosiella, Akkermansia, and Lactobacillus increased, whereas Faecalibaculum, Alloprevotella, Turicibacter, and g_Paraprevotella decreased. g__norank_f__Muribaculaceae was positively correlated with body weight and colon length and negatively with colon index scores, splenic index scores, and MPO levels; Alloprevotella was positively correlated with splenic index scores, histological scores, and TNF-α levels and negatively with thymus index scores and thymus index scores. Faecalibaculum was positively correlated with colon index scores and MPO levels. Metabolic investigations revealed 58 potential indicators, primarily associated with the metabolism of amino acids, purines, and lipids. Alloprevotella, g_Paraprevotella, and Bifidobacterium were strongly associated with metabolic pathways. CONCLUSION: BXD showed beneficial therapeutic effects in UC mice. The mechanism may be by promoting the balance and variety of gut microbiota, as well as regulating the metabolism of amino acids, purines, and lipids.


Assuntos
Antifibrinolíticos , Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa , Aminoácidos , Purinas , Peso Corporal , Lipídeos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo
8.
Math Biosci Eng ; 20(11): 19065-19085, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-38052591

RESUMO

Fluidized bed granulation (FBG) is a widely used granulation technology in the pharmaceutical industry. However, defluidization caused by the formation of large aggregates poses a challenge to FBG, particularly in traditional Chinese medicine (TCM) due to its complex physicochemical properties of aqueous extracts. Therefore, this study aims to identify the complex relationships between physicochemical characteristics and defluidization using data mining methods. Initially, 50 types of TCM were decocted and assessed for their potential influence on defluidization using a set of 11 physical properties and 10 chemical components, utilizing the loss rate as an evaluation index. Subsequently, the random forest (RF) and Apriori algorithms were utilized to uncover intricate association rules among physicochemical characteristics and defluidization. The RF algorithm analysis revealed the top 8 critical factors associated with defluidization. These factors include physical properties like glass transition temperature (Tg) and dynamic surface tension (DST) of DST100ms, DST1000ms, DST10ms and conductivity, in addition to chemical components such as fructose, glucose and protein contents. The results from Apriori algorithm demonstrated that lower Tg and conductivity were associated with an increased risk of defluidization, resulting in a higher loss rate. Moreover, DST100ms, DST1000ms and DST10ms exhibited a contrasting trend in the physical properties Specifically, defluidization probability increases when Tg and conductivity dip below 29.04℃ and 6.21 ms/m respectively, coupled with DST10ms, DST100ms and DST1000ms values exceeding 70.40 mN/m, 66.66 mN/m and 61.58 mN/m, respectively. Moreover, an elevated content of low molecular weight saccharides was associated with a higher occurrence of defluidization, accompanied by an increased loss rate. In contrast, protein content displayed an opposite trend regarding chemical properties. Precisely, the defluidization likelihood amplifies when fructose and glucose contents surpass 20.35 mg/g and 34.05 mg/g respectively, and protein concentration is less than 1.63 mg/g. Finally, evaluation criteria for defluidization were proposed based on these results, which could be used to avoid this situation during the granulation process. This study demonstrated that the RF and Apriori algorithms are effective data mining methods capable of uncovering key factors affecting defluidization.


Assuntos
Medicamentos de Ervas Chinesas , Estudos de Viabilidade , Algoritmos , Água , Frutose , Glucose
9.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5790-5797, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114174

RESUMO

Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-ß-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Scutellaria baicalensis/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
10.
Int J Nanomedicine ; 18: 5457-5472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771407

RESUMO

Introduction: The insufficient targeting delivery of therapeutic agents greatly impeded the treatment outcomes of rheumatoid arthritis (RA). Despite the recognized therapeutic advantages of gambogic acid (GBA) in inflammatory diseases, its high delivery efficiency to inflammatory site still limits its clinical application. Self-assembly of drug dimers into carrier-free nanoparticles (NPs) has become a straightforward and attractive approach to develop nanomedicines for RA treatment. Herein, homodimers of GBA were designed to form the carrier-free NPs by self-assembly for RA treatment. Methods: The synthetic gambogic acid dimers (GBA2) were self-assembled into NPs using a one-step solvent evaporation method. The size distribution, morphology, drug-loading efficiency (DLE) and storage stability were evaluated. A molecular dynamic simulation was conducted to gain further insight into the self-assembly mechanisms of GBA2/NPs. Besides, we investigated the cytotoxicity, apoptosis and cellular uptake profiles of GBA2/NPs in macrophages and osteoclasts. Finally, the specific biodistribution on the ankles of adjuvant-induced arthritis (AIA) mice, and the anti-RA efficacy of the AIA rat model were assessed. Results: GBA2/NPs exhibited the uniform spherical structure, possessing excellent colloidal stability, high self-assembly stability, high drug loading and low hemolytic activity. Comparing with GBA, GBA2/NPs showed higher cytotoxicity, cellular uptake and apoptosis rate against osteoclasts. In addition, GBA2/NPs exhibited much higher accumulation in ankle joints in vivo. As expected, the systematic administration of GBA2/NPs resulted in the greater alleviation of arthritic symptoms, cartilage protection, and inflammation, notably the reduced systemic toxicity compared to free GBA. Conclusion: GBA2/NPs formed GBA dimers exhibited the superior accumulation in the inflamed joint and anti-RA activity, potentially attributing to the similar extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration ("ELVIS") effects in inflamed joint and the enhanced cellular uptake in macrophages and osteoclasts. Our findings provide substantial evidence that self-assembly of GBA2/NPs would be a promising therapeutic alternative for RA treatment.


Assuntos
Artrite Reumatoide , Nanopartículas , Xantonas , Ratos , Camundongos , Animais , Nanomedicina , Distribuição Tecidual , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/induzido quimicamente , Xantonas/uso terapêutico , Nanopartículas/química
11.
Phytomedicine ; 109: 154549, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610129

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common complication of sepsis with poor effective interventions. Huashibaidu formula (HSBD) showed good therapeutic effects in treating coronavirus disease 2019 (COVID-19) patients. PURPOSE: This study was designed to investigate the therapeutic potential and precise mechanism of HSBD against sepsis-induced ALI based on network pharmacology and animal experiments. MATERIALS AND METHODS: Network pharmacology was used to predict the possible mechanism of HSBD against sepsis. Next, a sepsis-induced ALI rat model via intraperitoneal lipopolysaccharide (LPS) was constructed to evaluate the level of inflammatory cytokines and the degree of lung injury. The expression of inflammation-related signaling pathways, including TLR4/NF-κB and PI3K/Akt was determined by western blot. RESULTS: Network pharmacology analysis indicated that HSBD might have a therapeutic effect on sepsis mainly by affecting inflammatory and immune responses. Animal experiments demonstrated that HSBD protected the lung tissue from LPS-induced injury, and inhibited the levels of inflammatory cytokines such as interleukin (IL)-1ß, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the serum and IL-1ß, IL-5, IL-6, IL-18, GM-CSF, IFN-γ and TNF-α in the lung tissue. Western blot results revealed that HSBD downregulated the expression of TLR4/NF-κB and upregulated the expression of PI3K/Akt. CONCLUSION: The therapeutic mechanism of HSBD against sepsis-induced ALI mainly involved suppressing cytokine storms and relieving inflammatory symptoms by regulating the expression of TLR4/NF-κB and PI3K/Akt. Our study provides a scientific basis for the mechanistic investigation and clinical application of HSBD in the treatment of sepsis and COVID-19.


Assuntos
Lesão Pulmonar Aguda , Síndrome da Liberação de Citocina , Sepse , Animais , Ratos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Angew Chem Int Ed Engl ; 61(51): e202212164, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36240785

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.


Assuntos
Alcadienos , Nióbio , Nióbio/química , Alumínio , Catálise
13.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3701-3708, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850826

RESUMO

The production of solid preparations is a multi-unit and multi-step system and is a whole process chain. Its quality is affected by many factors such as material properties and process parameters. As an important analysis tool, multivariate models play an important role in pharmaceutical monitoring. Besides, multivariate models can comprehensively understand the multi-factor relationship between material properties, process parameters, and quality attributes of products, thereby promoting the whole process optimization and controlling the drug production quality. This paper summarized the application of commonly used multivariate models in the process of solid preparations, which provides a certain reference for the process modeling of Chinese medicinal preparations.


Assuntos
Tecnologia Farmacêutica , Preparações Farmacêuticas , Controle de Qualidade
14.
Front Cell Infect Microbiol ; 12: 884045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573768

RESUMO

Staphylococcus aureus has been recognized as an important human pathogen and poses a serious health threat worldwide. With the advent of antibiotic resistance, such as the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to develop new therapeutical agents. In this study, Chinese traditional medicine Tanreqing (TRQ) has been used as an alternative treating agent against MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition. TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis. Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula to be an effective agent against S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Divisão Celular , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência , Fatores de Virulência/metabolismo
15.
Angew Chem Int Ed Engl ; 61(6): e202115585, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843165

RESUMO

Air pollution by SO2 and NO2 has caused significant risks on the environment and human health. Understanding the mechanism of active sites within capture materials is of fundamental importance to the development of new clean-up technologies. Here we report the crystallographic observation of reversible coordinative binding of SO2 and NO2 on open NiII sites in a metal-organic framework (NKU-100) incorporating unprecedented {Ni12 }-wheels; each wheel exhibits six open NiII sites on desolvation. Immobilised gas molecules are further stabilised by cooperative host-guest interactions comprised of hydrogen bonds, π⋅⋅⋅π interactions and dipole interactions. At 298 K and 1.0 bar, NKU-100 shows adsorption uptakes of 6.21 and 5.80 mmol g-1 for SO2 and NO2 , respectively. Dynamic breakthrough experiments have confirmed the selective retention of SO2 and NO2 at low concentrations under dry conditions. This work will inspire the future design of efficient sorbents for the capture of SO2 and NO2 .

16.
Angew Chem Weinheim Bergstr Ger ; 134(51): e202212164, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38505214

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.

17.
Front Public Health ; 9: 559751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778156

RESUMO

Background: Cardiovascular disease is the leading cause of death worldwide and a major barrier to sustainable human development. The objective of this study was to evaluate the global, sex, age, region, and country-related cardiovascular disease (CVD) burden, as well as the trends, risk factors, and implications for the prevention of CVD. Methods: Detailed information from 1990 to 2017, including global, regional, and national rates of CVD, and 11 categories of mortality and disability-adjusted life years (DALYs) were collected from the Global Burden of Disease Study 2017. The time-dependent change in the trends of CVD burdens was evaluated by annual percentage change. Results: More than 17 million people died from CVD in 2017, which was approximately two times as many as cancer, and increased nearly 50% compared with 1990. Ischemic heart disease and stroke accounted for 85% of the total age-standardized death rate (ASDR) of CVD. The ASDR and age-standardized DALYs rate (ASYR) of CVD were 1.5 times greater in men compared with women. People over the age of 50 were especially at risk for developing CVD, with the number of cases and deaths in this age group accounting for more than 90% of all age groups. CVD mortality was related to regional economic development and the social demographic index. In regions with a high economic income or socio-demographic index, there was a greater decline in the ASDR of CVD. The ASDR of CVD in high SDI regions decreased more than 50% from 1990 to 2017. Tobacco use, diets low in whole grains, diets high in sodium, and high systolic blood pressure were the important risk factors related to CVD mortality. Conclusions: CVD remains a major cause of death and chronic disability in all regions of the world. Ischemic heart disease and stroke account for the majority of deaths related to CVD. Although the mortality rate for CVD has declined in recent years from a global perspective, the results of CVD data in 2017 suggest that the mortality and DALYs of CVD varied in different ages, sexes, and countries/regions around the world. Therefore, it is necessary to elucidate the specific characteristics of global CVD burden and establish more effective and targeted prevention strategies.


Assuntos
Doenças Cardiovasculares , Pessoas com Deficiência , Doenças Cardiovasculares/epidemiologia , Feminino , Carga Global da Doença , Humanos , Masculino , Anos de Vida Ajustados por Qualidade de Vida , Medição de Risco
18.
J Hematol Oncol ; 14(1): 197, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809683

RESUMO

BACKGROUND AND AIMS: Cancer will soon become the leading cause of death in every country in the twenty-first century. This study aimed to analyze the mortality and morbidity of 29 types of cancer in 204 countries or regions from 1990 to 2019 to guide global cancer prevention and control. METHODS: Detailed information for 29 cancer groups was collected from the Global Burden of Disease Study in 2019. The age-standardized incidence rate (ASIR) and age-standardized death rate (ASDR) of the 29 cancer groups were calculated based on sex, age, region, and country. In addition, separate analyses were performed for major cancer types. RESULTS: In 2019, more than 10 million people died from cancer, which was approximately twice the number in 1990. Tracheal, bronchus, and lung (TBL) cancers collectively showed the highest death rate, and the ASDR of pancreatic cancer increased by 24%, which was cancer with the highest case fatality rate (CFR). The global cancer ASIR showed an increasing trend, with testicular cancer, thyroid cancer, and malignant skin melanoma showing a significant increase. The ASDR and ASIR of cancer in males were about 1.5 times higher than that in females. Individuals over 50 years had the highest risk of developing cancer, with incidences and deaths in this age group accounting for more than 85% of cancers in all age groups. Asia has the heaviest cancer burden due to its high population density, with esophageal cancer in this region accounting for 53% of the total fatalities related to this type of cancer in the world. In addition, the mortality and morbidity of most cancers increased with the increase in the development or socio-demographic index (SDI) in the SDI regions based on the World Bank's Human Development Index (HDI), with cancer characteristics varying in the different countries globally. CONCLUSIONS: The global cancer burden continues to increase, with substantial mortality and morbidity differences among the different regions, ages, countries, gender, and cancer types. Effective and locally tailored cancer prevention and control measures are essential in reducing the global cancer burden in the future.


Assuntos
Neoplasias/epidemiologia , Fatores Etários , Feminino , Saúde Global , Humanos , Incidência , Masculino , Neoplasias/mortalidade , Fatores Sexuais
19.
Chem Sci ; 12(35): 11914-11920, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659731

RESUMO

Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm-2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd-O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2 via an adsorption-electrolysis device.

20.
Chem Soc Rev ; 50(20): 11270-11292, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34632985

RESUMO

The development of efficient catalysts to break down and convert woody biomass will be a paradigm shift in delivering the global target of sustainable economy and environment via the use of cheap, highly abundant, and renewable carbon resources. However, such development is extremely challenging due to the complexity of lignocellulose, and today most biomass is treated simply as waste. The solution lies in the design of multifunctional catalysts that can place effective control on substrate activation and product selectivity. This is, however, severely hindered by the lack of fundamental understanding of (i) the precise role of active sites, and (ii) the catalyst-substrate chemistry that underpins the catalytic activity. Moreover, active sites alone often cannot deliver the desired selectivity of products, and full understanding of the microenvironment of the active sites is urgently needed. Here, we review key recent advances in the study of reaction mechanisms of biomass conversion over emerging heterogeneous catalysts. These insights will inform the design of future catalytic systems showing improved activity and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA