Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8778-8783, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976362

RESUMO

Coupling Weyl quasiparticles and charge density waves (CDWs) can lead to fascinating band renormalization and many-body effects beyond band folding and Peierls gaps. For the quasi-one-dimensional chiral compound (TaSe4)2I with an incommensurate CDW transition at TC = 263 K, photoemission mappings thus far are intriguing due to suppressed emission near the Fermi level. Models for this unconventional behavior include axion insulator phases, correlation pseudogaps, polaron subbands, bipolaron bound states, etc. Our photoemission measurements show sharp quasiparticle bands crossing the Fermi level at T > TC, but for T < TC, these bands retain their dispersions with no Peierls or axion gaps at the Weyl points. Instead, occupied band edges recede from the Fermi level, opening a spectral gap. Our results confirm localization of quasiparticles (holes created by photoemission) is the key physics, which suppresses spectral weights over an energy window governed by incommensurate modulation and inherent phase defects of CDW.

2.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382909

RESUMO

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

3.
ACS Nano ; 16(9): 14918-14924, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36036754

RESUMO

Monolayer transition metal dichalcogenides offer an appropriate platform for developing advanced electronics beyond graphene. Similar to two-dimensional molecular frameworks, the electronic properties of such monolayers can be sensitive to perturbations from the surroundings; the implied tunability of electronic structure is of great interest. Using scanning tunneling microscopy/spectroscopy, we demonstrated a bandgap engineering technique in two monolayer materials, MoS2 and PtTe2, with the tunneling current as a control parameter. The bandgap of monolayer MoS2 decreases logarithmically by the increasing tunneling current, indicating an electric-field-induced gap renormalization effect. Monolayer PtTe2, by contrast, exhibits a much stronger gap reduction, and a reversible semiconductor-to-metal transition occurs at a moderate tunneling current. This unusual switching behavior of monolayer PtTe2, not seen in bulk semimetallic PtTe2, can be attributed to its surface electronic structure that can readily couple to the tunneling tip, as demonstrated by theoretical calculations.

4.
ACS Nano ; 16(6): 9953-9959, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699943

RESUMO

Epitaxial thin-film heterostructures offer a versatile platform for realizing topological surface states (TSSs) that may be emergent and/or tunable by tailoring the atomic layering in the heterostructures. Here, as an experimental demonstration, Sb and Bi2Te3 thin films with closely matched in-plane lattice constants are chosen to form two complementary heterostructures: Sb overlayers on Bi2Te3 (Sb/Bi2Te3) and Bi2Te3 overlayers on Sb (Bi2Te3/Sb), with the overlayer thickness as a tuning parameter. In the bulk form, Sb (a semimetal) and Bi2Te3 (an insulator) both host TSSs with the same topological order but substantially different decay lengths and dispersions, whereas ultrathin Sb and Bi2Te3 films by themselves are fully gapped trivial insulators. Angle-resolved photoemission band mappings, aided by theoretical calculations, confirm the formation of emergent TSSs in both heterostructures. The energy position of the topological Dirac point varies as a function of overlayer thickness, but the variation is non-monotonic, indicating nontrivial effects in the formation of topological heterostructure systems. The results illustrate the rich physics of engineered composite topological systems that may be exploited for nanoscale spintronics applications.

5.
ACS Nano ; 15(2): 3359-3364, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570920

RESUMO

A van der Waals bonded moiré bilayer formed by sequential growth of TiSe2 and TiTe2 monolayers exhibits emergent electronic structure as evidenced by angle-resolved photoemission band mapping. The two monolayers adopt the same lattice orientation but incommensurate lattice constants. Despite the lack of translational symmetry, sharp dispersive bands are observed. The dispersion relations appear distinct from those for the component monolayers alone. Theoretical calculations illustrate the formation of composite bands by coherent electronic coupling despite the weak interlayer bonding, which leads to band renormalization and energy shifts.

6.
Phys Rev Lett ; 125(17): 176405, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156647

RESUMO

Single layers of transition metal dichalcogenides are of interest for emergent properties; an often-neglected issue is substrate effects. Our experiments show that the charge density wave in a single-layer TiTe_{2} grown on PtTe_{2} films is strongly suppressed by increasing the PtTe_{2} substrate thickness. Given that the interfacial bonding remains of the weak incommensurate van der Waals type, the observed changes are correlated with a thickness-dependent metallicity transformation in the PtTe_{2} substrate. The results illustrate the crucial role of the substrate in single-layer physics.

7.
Phys Rev Lett ; 124(23): 236402, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603150

RESUMO

Interfacing bulk conducting topological Bi_{2}Se_{3} films with s-wave superconductors initiates strong superconducting order in the nontrivial surface states. However, bulk insulating topological (Bi_{1-x}Sb_{x})_{2}Te_{3} films on bulk Nb instead exhibit a giant attenuation of surface superconductivity, even for films only two layers thick. This massive suppression of proximity pairing is evidenced by ultrahigh-resolution band mappings and by contrasting quantified superconducting gaps with those of heavily n-doped topological Bi_{2}Se_{3}/Nb. The results underscore the limitations of using superconducting proximity effects to realize topological superconductivity in nearly intrinsic systems.

8.
Phys Rev Lett ; 124(3): 036402, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031832

RESUMO

Platinum ditelluride (PtTe_{2}), a type-II Dirac semimetal, remains semimetallic in ultrathin films down to just two triatomic layers (TLs) with a negative gap of -0.36 eV. Further reduction of the film thickness to a single TL induces a Lifshitz electronic transition to a semiconductor with a large positive gap of +0.79 eV. This transition is evidenced by experimental band structure mapping of films prepared by layer-resolved molecular beam epitaxy, and by comparing the data to first-principles calculations using a hybrid functional. The results demonstrate a novel electronic transition at the two-dimensional limit through film thickness control.

10.
Nat Commun ; 4: 2925, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24326296

RESUMO

Organic-metal interfaces are key elements in organic-based electronics. The energy-level alignment between the metal Fermi level and the molecular orbital levels determines the injection barriers for the charge carriers at the interfaces, which are crucial for the performance of organic electronic devices. Dipole formation at the interfaces has been regarded as the main factor that affects the energy-level alignment. Several models have been proposed for the mechanism of dipole formation in the context of the interface between organic molecules and a bulk metal crystal surface, at which surface states were mostly used to probe the interfacial properties. Here we report that when the bulk metal crystal is replaced by a uniform metal thin film, the resulting two-dimensional quantum-well states will be able to not only probe but also modify the interfacial electronic structures, such as gap states, that have no counterpart at the organic-bulk crystal interface.

11.
Eur J Pharmacol ; 460(1): 9-17, 2003 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-12535854

RESUMO

Amphetamine, a psychostimulant, has been shown to act as a channel blocker of muscle nicotinic receptors and to induce a Ca(2+)-dependent secretion from adrenal chromaffin cells. In this study, the relationship between amphetamine and nicotinic receptors was studied using bovine adrenal chromaffin cells as a model system. Our results show that D-amphetamine sulfate alone induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](c)) and [3H]norepinephrine release in a dose-dependent and extracellular Ca(2+)-dependent manner. Two common nicotinic receptor antagonists, hexamethonium and mecamylamine, suppressed the D-amphetamine sulfate-induced [Ca(2+)](c) rise and [3H]norepinephrine release. In addition, D-amphetamine sulfate inhibited the 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP)-induced [Ca(2+)](c) rise and [3H]norepinephrine release, but not the high K(+)- or veratridine-induced [Ca(2+)](c) increase and [3H]norepinephrine release. Antagonists, including alpha-bungarotoxin and choline, that are more specific for alpha7 nicotinic receptors were capable of inhibiting the D-amphetamine sulfate-induced [Ca(2+)](c) rise, while D-amphetamine sulfate was found to be capable of inhibiting the [Ca(2+)](c) rise induced by the alpha7-nicotinic receptor agonists, epibatidine and choline. Moreover, D-amphetamine sulfate dose-dependently suppressed [3H]nicotine binding to chromaffin cells. We, therefore, conclude that D-amphetamine sulfate acts as a nicotinic receptor agonist to induce [Ca(2+)](c) increase and [3H]norepinephrine release in bovine adrenal chromaffin cells.


Assuntos
Anfetamina/farmacologia , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Animais , Cátions Bivalentes/metabolismo , Bovinos , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/metabolismo , Relação Dose-Resposta a Droga , Receptores Nicotínicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA