Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(29): 3954-3957, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38498352

RESUMO

A uranium(III) silylate complex [K(DME)4][UI2{(Si(SiMe3)2SiMe2)2O}] (1) was stabilized by the addition of 18-crown-6, forming [K(18-crown-6)][UI2{(Si(SiMe3)2SiMe2)2O}] (1-crown). Crystallization under multiple conditions resulted in three distinct molecular structures. Compound 1-crown was further characterized in the solution state via1H, 13C, and 29Si NMR spectroscopy, and electronic absorption spectroscopy.

2.
J Invertebr Pathol ; 195: 107850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347390

RESUMO

A significant amount of work has been devoted towards understanding the cellular and humoral immune responses in arthropod vectors. Although fleas (Siphonaptera) are vectors of numerous bacterial pathogens, few studies have examined how these insects defend themselves from infection. In this study, we investigated the immune defense mechanisms in the hemocoel of cat fleas (Ctenocephalides felis), currently the most important flea pest of humans and many domestic animals. Using model species of bacteria (Micrococcus luteus, Serratia marcescens, and Escherichia coli), we delivered a systemic infection and measured the following: antimicrobial activity of hemolymph, levels of free radicals resulting from the induction of oxidase-based pathways, number of circulating hemocytes, phagocytosis activity of circulating hemocytes, and in vivo bacteria killing efficiency when phagocytosis activity is limited. Our results show that the antimicrobial activity of flea hemolymph increases in response to certain species of bacteria; yet, a systemic infection with the same bacterial species did not influence levels of hydrogen peroxide (H2O2), a reactive intermediate of oxygen, at the same time. Additionally, the number of circulating hemocytes increases in response to E. coli infection, and these cells display strong phagocytic activity against this bacterium. Moreover, limiting phagocytosis by injecting polystyrene beads subsequently increases flea susceptibility to E. coli infection when compared to injury controls; however, impairing the cellular immune response itself did not increase flea susceptibility to infection when compared to untreated fleas. Overall, this work yields significant insight into how fleas interact with bacterial pathogens in their hemocoel, and suggests that cellular and humoral immune responses cooperate to combat systemic bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Doenças do Gato , Ctenocephalides , Infecções por Escherichia coli , Infestações por Pulgas , Gatos , Humanos , Animais , Ctenocephalides/microbiologia , Escherichia coli , Peróxido de Hidrogênio , Insetos Vetores/microbiologia , Bactérias , Infecções por Escherichia coli/veterinária , Mecanismos de Defesa
3.
Inorg Chem ; 60(5): 3460-3470, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560112

RESUMO

Tellurium catecholate complexes were investigated to probe the redox chemistry of tellurium, whose oxidation state can span from -2 to +6. Treating TeO2 with catechols resulted in tellurium coordination complexes in high yields within minutes to hours at room temperature or with extended heating, depending on the ligand substituents, giving Te(IV) complexes of the form Te(C)2, where C = 3,5-di-tert-butylcatecholate, o-catecholate, or tetrachlorocatecholate. The redox behavior of these complexes was investigated through addition of organic oxidants, giving nearly quantitative adducts of pyridine N-oxide or N-methylmorpholine N-oxide with each tellurium complex, the latter set leading to ligand oxidation upon heating. Each compound was characterized crystallographically and computationally, providing data consistent with a mostly electrostatic interaction and very little covalent character between the N-oxide and Te complex. The Te N-oxide bond orders are consistently lower than those with the catechol derivatives, as characterized with the Mayer, Gopinathan-Jug (G-J), and first Nalewajski-Mrozek (N-M1) bond indices. The tellurium lone pair is energetically buried by 1.93-2.81 eV, correlating with the observation that the ligands are more reactive than the tellurium center toward oxidation. This combined experimental and theoretical study finds structure-property relationships between ligand design and reactivity that will aid in future efforts for the recovery of tellurium.

4.
Biomed Opt Express ; 10(2): 1032-1043, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30800530

RESUMO

We developed a spectral domain optical coherence tomography (SDOCT) fiber optic probe for imaging and sub-nanometer displacement measurements inside the mammalian cochlea. The probe, 140 µm in diameter, can scan laterally up to 400 µm by means of a piezoelectric bender. Two different sampling rates are used, 10 kHz for high-resolution B-scan imaging, and 100 kHz for displacement measurements in order to span the auditory frequency range of gerbil (~50 kHz). Once the cochlear structures are recognized, the scanning range is gradually decreased and ultimately stopped with the probe pointing at the selected angle to measure the simultaneous displacements of multiple structures inside the organ of Corti (OC). The displacement measurement is based on spectral domain phase microscopy. The displacement noise level depends on the A-scan signal of the structure within the OC and we have attained levels as low as ~0.02 nm in in vivo measurements. The system's broadband infrared light source allows for an imaging depth of ~2.7 mm, and axial resolution of ~3 µm. In future development, the probe can be coupled with an electrode for time-locked voltage and displacement measurements in order to explore the electro-mechanical feedback loop that is key to cochlear processing. Here, we describe the fabrication of the laterally-scanning optical probe, and demonstrate its functionality with in vivo experiments.

5.
J Acoust Soc Am ; 141(1): 395, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147569

RESUMO

The usual technique for measuring vibration within the cochlear partition is heterodyne interferometry. Recently, spectral domain phase microscopy (SDPM) was introduced and offers improvements over standard heterodyne interferometry. In particular, it has a penetration depth of several mm due to working in the infrared range, has narrow and steep optical sectioning due to using a wideband light source, and is able to measure from several cochlear layers simultaneously. However, SDPM is susceptible to systematic error due to "phase leakage," in which the signal from one layer competes with the signal from other layers. Here, phase leakage is explored in vibration measurements in the cochlea and a model structure. The similarity between phase leakage and signal competition in heterodyne interferometry is demonstrated both experimentally and theoretically. Due to phase leakage, erroneous vibration amplitudes can be reported in regions of low reflectivity that are near structures of high reflectivity. When vibration amplitudes are greater than ∼0.1 of the light source wavelength, phase leakage can cause reported vibration waveforms to be distorted. To aid in the screening of phase leakage in experimental results, the error is plotted and discussed as a function of the important parameters of signal strength and vibration amplitude.


Assuntos
Cóclea/diagnóstico por imagem , Microscopia de Interferência/métodos , Tomografia de Coerência Óptica/métodos , Artefatos , Cóclea/fisiologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA