Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 26(6): 1067-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037597

RESUMO

The enantiomeric siderophores pyochelin and enantiopyochelin of Pseudomonas aeruginosa and Pseudomonas protegens promote growth under iron limitation and activate transcription of their biosynthesis and uptake genes via the AraC-type regulator PchR. Here we investigated siderophore binding to PchR in vitro using fluorescence spectroscopy. A fusion of the N-terminal domain of P. aeruginosa PchR with maltose binding protein (MBP-PchR'PAO) bound iron-loaded (ferri-) pyochelin with an affinity (Kd) of 41 ± 5 µM. By contrast, no binding occurred with ferri-enantiopyochelin. Stereospecificity of a similar fusion protein of the P. protegens PchR (MBP-PchR'CHA0) was less pronounced. The Kd's of MBP-PchR'CHA0 for ferri-enantiopyochelin and ferri-pyochelin were 24 ± 5 and 40 ± 7 µM, respectively. None of the proteins interacted with the iron-free siderophore enantiomers, suggesting that transcriptional activation by PchR occurs only when the respective siderophore actively procures iron to the cell.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Fenóis/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Fenóis/química , Ligação Proteica , Pseudomonas/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sideróforos/química , Espectrometria de Fluorescência , Estereoisomerismo , Tiazóis/química , Fatores de Transcrição/genética , Ativação Transcricional
2.
Arch Microbiol ; 190(4): 471-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18551278

RESUMO

It is generally assumed that respiratory complexes exclusively use protons to energize the inner mitochondrial membrane. Here we show that oxidation of NADH by submitochondrial particles (SMPs) from the yeast Yarrowia lipolytica is coupled to protonophore-resistant Na+ uptake, indicating that a redox-driven, primary Na+ pump is operative in the inner mitochondrial membrane. By purification and reconstitution into proteoliposomes, a respiratory NADH dehydrogenase was identified which coupled NADH-dependent reduction of ubiquinone (1.4 micromol min(-1) mg(-1)) to Na+ translocation (2.0 micromol min(-1) mg(-1)). NADH-driven Na+ transport was sensitive towards rotenone, a specific inhibitor of complex I. We conclude that mitochondria from Y. lipolytica contain a NADH-driven Na+ pump and propose that it represents the complex I of the respiratory chain. Our study indicates that energy conversion by mitochondria does not exclusively rely on the proton motive force but may benefit from the electrochemical Na+ gradient established by complex I.


Assuntos
Mitocôndrias/metabolismo , NAD/metabolismo , Sódio/metabolismo , Yarrowia/metabolismo , Oxirredução , Quinona Redutases/isolamento & purificação , Quinona Redutases/metabolismo , Rotenona/farmacologia , Ubiquinona/metabolismo , Desacopladores/farmacologia
3.
J Bacteriol ; 189(10): 3902-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17322313

RESUMO

The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). To study the function of the Na(+)-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na(+)-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na(+)-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na(+) to 0.4 mM at 14.7 mM Na(+), indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min(-1) mg(-1) in the wild type compared to 3.1 nmol min(-1) mg(-1) in the NQR deletion strain. Raising the Na(+) concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H(2)O(2) formation by wild-type V. cholerae cells (30.9 nmol min(-1) mg(-1)) were threefold higher than rates observed with the mutant strain lacking the Na(+)-NQR (9.7 nmol min(-1) mg(-1)). Our study shows that environmental Na(+) could stimulate ubisemiquinone formation by the Na(+)-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones.


Assuntos
Benzoquinonas/metabolismo , Quinona Redutases/metabolismo , Sódio/metabolismo , Superóxidos/metabolismo , Vibrio cholerae/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/fisiologia , Deleção de Genes , Quinona Redutases/genética , Espécies Reativas de Oxigênio/metabolismo , Vibrio cholerae/genética
4.
J Biol Chem ; 280(24): 22560-3, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15870079

RESUMO

The Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae contains a single Fe-S cluster localized in subunit NqrF. Here we study the electronic properties of the Fe-S center in a truncated version of the NqrF subunit comprising only its ferredoxin-like Fe-S domain. Mössbauer spectroscopy of the Fe-S domain in the oxidized state is consistent with a binuclear Fe-S cluster with tetrahedral sulfur coordination by the cysteine residues Cys(70), Cys(76), Cys(79), and Cys(111). Important sequence motifs surrounding these cysteines are conserved in the Fe-S domain and in vertebrate-type ferredoxins. The magnetic circular dichroism spectra of the photochemically reduced Fe-S domain exhibit a striking similarity to the magnetic circular dichroism spectra of vertebrate-type ferredoxins required for the in vivo assembly of iron-sulfur clusters. This study reveals a novel function for vertebrate-type [2Fe-2S] clusters as redox cofactors in respiratory dehydrogenases.


Assuntos
Ferredoxinas/química , Quinona Redutases/química , ATPase Trocadora de Sódio-Potássio/química , Vibrio cholerae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Catálise , Dicroísmo Circular , Cisteína/química , Proteínas Ferro-Enxofre/química , Magnetismo , Dados de Sequência Molecular , Oxirredução , Consumo de Oxigênio , Estrutura Terciária de Proteína , Quinona Redutases/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/química , Espectroscopia de Mossbauer/métodos , Raios Ultravioleta , Vertebrados
5.
J Am Chem Soc ; 125(27): 8209-17, 2003 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12837091

RESUMO

Catalysis for chemical synthesis by cell-free monooxygenases necessitates an efficient and robust in situ regeneration system to supply the enzyme with reducing equivalents. We report on a novel approach to directly regenerate flavin-dependent monooxygenases. The organometallic complex [CpRh(bpy)(H(2)O)](2+) catalyzes the transhydrogenation reaction between formate and isoalloxazine-based cofactors such as FAD and FMN. Coupling this FADH(2) regeneration reaction to the FADH(2)-dependent styrene monooxygenase (StyA) resulted in a chemoenzymatic epoxidation reaction where the organometallic compound substitutes for the native reductase (StyB), the nicotinamide coenzyme (NAD), and an artificial NADH regeneration system such as formate dehydrogenase. Various styrene derivatives were converted into the essentially optically pure (S)-epoxides (ee > 98%). In addition, StyA was shown to be capable of performing sulfoxidation reactions. The productivity of the chemoenzymatic epoxidation reaction using 6.5 microM StyA reached up to 6.4 mM/h, corresponding to approximately 70% of a comparable fully enzymatic reaction using StyB, NADH, and formate dehydrogenase for regeneration. The coupling efficiency of the nonenzymatic regeneration reaction to enzymatic epoxidation was examined in detail, leading to an optimized reaction setup with minimized quenching of the electron supply for the epoxidation reaction. Thus, up to 60% of the reducing equivalents provided via [CpRh(bpy)(H(2)O)](2+) could be channeled into epoxide rather than hydrogen peroxide formation, allowing selective synthesis with high yields.


Assuntos
Compostos de Epóxi/síntese química , Flavina-Adenina Dinucleotídeo/química , Oxigenases de Função Mista/química , Compostos Organometálicos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Catálise , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Oxigenases de Função Mista/metabolismo , NAD/química , NAD/metabolismo , Compostos Organometálicos/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Ródio/química , Estirenos/química , Estirenos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA