Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
New Phytol ; 240(2): 727-743, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553956

RESUMO

Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.


Assuntos
Oryza , Oryza/metabolismo , Cromatina/metabolismo , Proteínas de Plantas/metabolismo , Epigênese Genética , Homeostase , Fosfatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
3.
Plant Cell Environ ; 46(4): 1104-1119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36208118

RESUMO

Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.


Assuntos
Oryza , Oryza/genética , Proteínas de Plantas/genética , Fosfatos , Fósforo , Produtos Agrícolas , Raízes de Plantas
4.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238600

RESUMO

Acyl activating enzyme 3 (AAE3) was identified as being involved in the acetylation pathway of oxalate degradation, which regulates the responses to biotic and abiotic stresses in various higher plants. Here, we investigated the role of Glycine sojaAAE3 (GsAAE3) in Cadmium (Cd) and Aluminum (Al) tolerances. The recombinant GsAAE3 protein showed high activity toward oxalate, with a Km of 105.10 ± 12.30 µM and Vmax of 12.64 ± 0.34 µmol min-1 mg-1 protein, suggesting that it functions as an oxalyl-CoA synthetase. The expression of a GsAAE3-green fluorescent protein (GFP) fusion protein in tobacco leaves did not reveal a specific subcellular localization pattern of GsAAE3. An analysis of the GsAAE3 expression pattern revealed an increase in GsAAE3 expression in response to Cd and Al stresses, and it is mainly expressed in root tips. Furthermore, oxalate accumulation induced by Cd and Al contributes to the inhibition of root growth in wild soybean. Importantly, GsAAE3 overexpression increases Cd and Al tolerances in A. thaliana and soybean hairy roots, which is associated with a decrease in oxalate accumulation. Taken together, our data provide evidence that the GsAAE3-encoded protein plays an important role in coping with Cd and Al stresses.


Assuntos
Glycine max/genética , Ligases/genética , Oxalatos/metabolismo , Estresse Fisiológico/genética , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Alumínio/toxicidade , Cádmio/toxicidade , Ligases/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos
5.
Front Plant Sci ; 11: 724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582254

RESUMO

Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.

6.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941034

RESUMO

The IREG (IRON REGULATED/ferroportin) family of genes plays vital roles in regulating the homeostasis of iron and conferring metal stress. This study aims to identify soybean IREG family genes and characterize the function of GmIREG3 in conferring tolerance to aluminum stress. Bioinformatics and expression analyses were conducted to identify six soybean IREG family genes. One GmIREG, whose expression was significantly enhanced by aluminum stress, GmIREG3, was studied in more detail to determine its possible role in conferring tolerance to such stress. In total, six potential IREG-encoding genes with the domain of Ferroportin1 (PF06963) were characterized in the soybean genome. Analysis of the GmIREG3 root tissue expression patterns, subcellular localizations, and root relative elongation and aluminum content of transgenic Arabidopsis overexpressing GmIREG3 demonstrated that GmIREG3 is a tonoplast localization protein that increases transgenic Arabidopsis aluminum resistance but does not alter tolerance to Co and Ni. The systematic analysis of the GmIREG gene family reported herein provides valuable information for further studies on the biological roles of GmIREGs in conferring tolerance to metal stress. GmIREG3 contributes to aluminum resistance and plays a role similar to that of FeIREG3. The functions of other GmIREG genes need to be further clarified in terms of whether they confer tolerance to metal stress or other biological functions.


Assuntos
Alumínio/farmacologia , Arabidopsis , Proteínas de Transporte de Cátions , Glycine max/genética , Plantas Geneticamente Modificadas , Proteínas de Soja , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Estresse Fisiológico/genética
7.
Food Sci Nutr ; 7(11): 3784-3796, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763028

RESUMO

The 2-acetyl-1-pyrroline (2AP) is a key aroma compound in fragrant rice. The present study assessed the γ-aminobutyric acid (GABA) and nitrogen (N) application induced regulations in the biochemical basis of rice aroma formation. Four N levels, that is, 0, 0.87, 1.75, and 2.61 g/pot, and two GABA treatments, that is, 0 mg/L (GABA0) and 250 mg/L (GABA250), were applied to three fragrant rice cultivars, that is, Yuxiangyouzhan, Yungengyou 14, and Basmati-385. Results showed that GABA250 increased 2AP, Na, Mn, Zn, and Fe contents by 8.44%, 10.95%, 25.70%, 11.14%, and 43.30%, respectively, under N treatments across cultivars. The GABA250 further enhanced the activities of proline dehydrogenase (PDH), ornithine aminotransferase (OAT) (both at 15 days after heading (d AH), and diamine oxidase (DAO) (at maturity) by 20.36%, 11.24%, and 17.71%, respectively. Significant interaction between GABA and N for Mn, Zn, and Fe contents in grains, proline content in leaves, GABA content in leaves at 15 d AH and maturity stage (MS), Δ1-pyrroline-5-carboxylic acid (P5C) contents in leaves at 15 d AH, and Δ1-pyrroline-5-carboxylate synthase (P5CS), PDH, and OAT activities in leaves at MS was noted. Moreover, the 2AP contents in grains at MS showed a significant and positive correlation with the proline contents in the leaves at 15d AH. In conclusion, GABA250 enhanced the 2AP, Na, Mn, Zn, and Fe contents, as well as the enzyme activities involved in 2AP biosynthesis. Exogenous GABA and N application improved the 2AP contents and nutrient uptake in fragrant rice.

8.
Electron. j. biotechnol ; 40: 58-64, July. 2019. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1053475

RESUMO

Background: Prodigiosin has been demonstrated to be an important candidate in investigating anticancer drugs and in many other applications in recent years. However, industrial production of prodigiosin has not been achieved. In this study, we found a prodigiosin-producing strain, Serratia marcescens FZSF02, and its fermentation strategies were studied to achieve the maximum yield of prodigiosin. Results: When the culture medium consisted of 16.97 g/L of peanut powder, 16.02 g/L of beef extract, and 11.29 mL/L of olive oil, prodigiosin reached a yield of 13.622 ± 236 mg/L after culturing at 26 °C for 72 h. Furthermore, when 10 mL/L olive oil was added to the fermentation broth at the 24th hour of fermentation, the maximum prodigiosin production of 15,420.9 mg/L was obtained, which was 9.3-fold higher than the initial level before medium optimization. More than 60% of the prodigiosin produced with this optimized fermentation strategy was in the form of pigment pellets. To the best of our knowledge, this is the first report on this phenomenon of pigment pellet formation, which made it much easier to extract prodigiosin at low cost. Prodigiosin was then purified and identified by absorption spectroscopy, HPLC, and LCMS. Purified prodigiosin obtained in this study showed anticancer activity in separate experiments on several human cell cultures: A549, K562, HL60, HepG2, and HCT116. Conclusions: This is a promising strain for producing prodigiosin. The prodigiosin has potential in anticancer medicine studies.


Assuntos
Prodigiosina/biossíntese , Prodigiosina/farmacologia , Serratia marcescens/metabolismo , Antineoplásicos/farmacologia , Arachis/química , Pós , Prodigiosina/isolamento & purificação , Espectrometria de Massas , Células Tumorais Cultivadas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Técnicas de Cultura de Células , Fermentação , Azeite de Oliva/química , Acetatos , Nitrogênio
9.
J Colloid Interface Sci ; 523: 151-158, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614424

RESUMO

Converting CO2 into high-valued chemicals with sunlight is regarded as a promising way to solve the impending energy and environmental crisis. Development of efficient photocatalysts with suitable energy band gap, high stability and favorable structure is thus of very importance. Herein, a novel hierarchical Bi2WO6 photocatalyst assembled by Bi2WO6 nanosheets with a hollow and rod-shaped appearance has been developed via a facile hydrothermal process. Interestingly, we found that the hydrolysis of Bi(NO3)3 in water can produce solid Bi6O5(OH)3(NO3)5·3H2O microrods which can be transformed to hollow-hierarchical Bi2WO6 nanosheets by virtue of the Kirkendall effect. The developed Bi2WO6 nanosheets exhibit a 58 times higher specific surface area than that of bulk Bi2WO6 and a remarkable enhancement in electrochemical performance such as photocurrent and charge transfer. As a result, the hollow-hierarchical structured Bi2WO6 photocatalysts achieve a high CH4 yield of 2.6 µmol g-1 h-1, 8 times higher than that of bulk Bi2WO6. Moreover, the developed photocatalysts exhibit a high stability during the recycling experiments. This work may present a new strategy to attain hierarchical structured photocatalysts with high activity and stability toward CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA