RESUMO
Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInP2S6-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C. The resistive switching is attributed to the ferroelectric polarization-modulated thermal emission accompanied by the Fowler-Nordheim tunneling across the interfaces. First-principles calculations reveal that the good device performances are associated with the exceptionally strong ferroelectric polarization in CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules, such as long-term potentiation/depression and spike amplitude/spike time-dependent plasticity, are also demonstrated. The results highlight the great application potential of van der Waals antiferroelectrics in high-performance synaptic devices for neuromorphic computing.
RESUMO
The effects of enzymatic deamidation by protein-glutaminase (PG) on the texture, rheology, microstructure, and sensory properties of skimmed set-type yoghurt were studied. The proportion of small-particle size milk protein micelles (10-50 nm) increased significantly from 0 to 99.39% after PG deamidation. Cryo-SEM results revealed that PG-treated yoghurt had a denser and less open 3D structure. PG was effective at inhibiting post-acidification during storage at 4 â. The water holding capacity of PG-treated yoghurt (0.12 U·mL-1) increased by more than 15%. The fluidity and viscosity of yoghurt were significantly improved with increasing PG dose. Sensory evaluation revealed that PG (0.06 U·mL-1) significantly improved the smoothness and creaminess of skimmed set-type yoghurt, which corresponded to the pastiness in texture. In summary, PG can effectively address the problems of post-acidification, gel fracture, and flavors change in skimmed set-type yoghurt, providing new applications for PG in the food industry.
Assuntos
Glutaminase , Iogurte , Proteínas do Leite , Reologia , MicelasRESUMO
Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries. Recent renewed interest in low-field CMR has been spurred by the clinical need to provide sustainable imaging technology capable of yielding diagnosticquality images whilst also being tailored to the local populations and healthcare ecosystems. This review aims to evaluate the technical, practical and cost considerations of low field CMR whilst also exploring the key barriers to implementing sustainable MRI in both the developing and developed world.
Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico por imagem , Atenção à Saúde , Ecossistema , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância MagnéticaRESUMO
The epitaxial growth of technically important ß-Ga2O3 semiconductor thin films has not been realized on flexible substrates due to the limitations of high-temperature crystallization conditions and lattice-matching requirements. We demonstrate the epitaxial growth of ß-Ga2O3(-201) thin films on flexible CeO2(001)-buffered Hastelloy tape. The results indicate that CeO2(001) has a small bi-axial lattice mismatch with ß-Ga2O3(-201), inducing simultaneous double-domain epitaxial growth. Flexible photodetectors are fabricated on the epitaxial ß-Ga2O3-coated tape. Measurements reveal that the photodetectors have a responsivity of 4 × 104 mA/W, with an on/off ratio reaching 1000 under 254 nm incident light and 5 V bias voltage. Such a photoelectrical performance is within the mainstream level of ß-Ga2O3-based photodetectors using conventional rigid single-crystal substrates. More importantly, it remained robust against more than 20,000 bending test cycles. Moreover, the technique paves the way for the direct in situ epitaxial growth of other flexible oxide semiconductor devices in the future.
RESUMO
The tunnel junction (TJ) is a crucial structure for numerous III-nitride devices. A fundamental challenge for TJ design is to minimize the TJ resistance at high current densities. In this work, we propose the asymmetric p-AlGaN/i-InGaN/n-AlGaN TJ structure for the first time. P-AlGaN/i-InGaN/n-AlGaN TJs were simulated with different Al or In compositions and different InGaN layer thicknesses using TCAD (Technology Computer-Aided Design) software. Trained by these data, we constructed a highly efficient model for TJ resistance prediction using machine learning. The model constructs a tool for real-time prediction of the TJ resistance, and the resistances for 22,254 different TJ structures were predicted. Based on our TJ predictions, the asymmetric TJ structure (p-Al0.7Ga0.3N/i-In0.2Ga0.8N/n-Al0.3Ga0.7N) with higher Al composition in p-layer has seven times lower TJ resistance compared to the prevailing symmetric p-Al0.3Ga0.7N/i-In0.2Ga0.8N/n-Al0.3Ga0.7N TJ. This study paves a new way in III-nitride TJ design for optical and electronic devices.