RESUMO
In this study, we located eight samples with null alleles of amelogenin out of 10,750 cases, and discussed the influence in gender identification and forensic personal identification. Amelogenin was detected and retested by several autosomal STR kits and sex chromosomal STR kits, and the causes were analyzed by chromosome karyotype analysis and Y chromosome microdeletion detection if necessary. Suspected AMEL-X loss was observed in five samples, but no abnormality was detected in the X-STR loci. AMEL-X was recovered when samples were retested by other detection systems designed with different primers. One sample had AMEL-X and X-STR loci loss, and the karyotype was chimeric 45,X0[70]/46,X,+mar[13].Two male samples lost AMEL-Y fragment, and both of them lost DYS522-DYS570-DYS576 loci, but no abnormalities were found in the STS loci of SRY and AZF regions. Therefore, when carrying out gender identification by using amelogenin, it is essential to focus on null alleles of amelogenin. In especially, deal with the samples collected from the individuals who had chromosomal hereditary disorders(e.g. Turner Syndrome and Oligospermia / Azoospermia). In order to achieve this, laboratories should have various techniques to verify the null alleles of amelogenin and ensure accurate genotyping. Accurate genotyping of amelogenin and DNA database establishment are vital for personal identification.
Assuntos
Amelogenina/genética , Cromossomos Humanos Y , Alelos , Cromossomos Humanos Y/genética , Primers do DNA , Humanos , MasculinoRESUMO
The influence of the autophagy-related gene Beclin1 on proliferation, invasion and metastasis of the cervical cancer CaSki cells and its possible mechanism in vitro were here targeted. After the overexpression vector pcDNA3.1-Beclin1 and RNA interference vector pSUPER-Beclin1 were transfected into CaSki cells in vitro, stable expression cell lines demonstration Beclin1 expression was upregulated, and VEGF and MMP-9 expression were decreased, leading to cell arrest in the G0/G1 phase of the cell cycle. MTT assays further revealed proliferation of cells was significantly inhibited in Beclin1-overexpressing transfectant cells, with invasion and metastasis also being inhibited in Transwell chamber assays. The present results suggest that Beclin1 inhibits invasion and metastasis of cervical cancer CaSki cells in vitro. Mechanisms probably involve Beclin1 inhibition of cell proliferation, and decreased expression of VEGF and MMP-9 proteins.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias do Colo do Útero/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/biossíntese , Proteína Beclina-1 , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/biossíntese , Proteínas de Membrana/biossíntese , Invasividade Neoplásica/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fator A de Crescimento do Endotélio Vascular/biossínteseRESUMO
The purpose of this study was to investigate whether the autophagy-related gene, Beclin1, plays a role in the regulation of chemosensitivity to anti-cancer drugs in cervical cancer CaSki cells. Expression of the Beclin1 protein was up-regulated in pcDNA3.1-Bec transfectants and led to cell arrest in the G(0)/G(1) phase of the cell cycle. The MTT assay indicated that over-expression of Beclin1 sensitized CaSki cells to chemotherapeutic drugs (cisplatin, paclitaxel, 5-fluorouracil, and epirubicin) and induced greater degrees of cytotoxicity than vector-only controls. After treatment with anti-cancer drugs, flow cytometric analysis indicated that the Beclin1-transfected group showed a greater increase in apoptosis than did the non-transfected group. Furthermore, pSUPER-Bec transfectants did not lead to a significant increase of resistance to each of these anti-cancer drugs. These results suggest that Beclin1 plays an important role in the regulation of potent anti-tumor activity, and over-expression of Beclin1 in CaSki cells may enhance apoptosis signaling induced by anti-cancer drugs.