Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Autophagy ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953310

RESUMO

Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.

2.
Cell Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898113

RESUMO

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

3.
Cell Res ; 33(11): 835-850, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726403

RESUMO

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Serina/metabolismo , Linhagem Celular Tumoral
4.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384137

RESUMO

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Nucleicos , Animais , Proteínas Quinases Ativadas por AMP/genética , Imunidade Inata , Antivirais , Glucose
5.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217034

RESUMO

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Assuntos
Insulinas , Inanição , Humanos , Masculino , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Lisossomos/metabolismo , Inanição/metabolismo , Adenosina Trifosfatases/metabolismo , Caenorhabditis elegans , Monofosfato de Adenosina/metabolismo , Frutose/metabolismo , Insulinas/metabolismo
6.
Sci China Life Sci ; 65(10): 1971-1984, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35508791

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a strong production of inflammatory cytokines such as TNF and IL-6, which underlie the severity of the disease. However, the molecular mechanisms responsible for such a strong immune response remains unclear. Here, utilizing targeted tandem mass spectrometry to analyze serum metabolome and lipidome in COVID-19 patients at different temporal stages, we identified that 611 metabolites (of 1,039) were significantly altered in COVID-19 patients. Among them, two metabolites, agmatine and putrescine, were prominently elevated in the serum of patients; and 2-quinolinecarboxylate was changed in a biphasic manner, elevated during early COVID-19 infection but levelled off. When tested in mouse embryonic fibroblasts (MEFs) and macrophages, these 3 metabolites were found to activate the NF-κB pathway that plays a pivotal role in governing cytokine production. Importantly, these metabolites were each able to cause strong increase of TNF and IL-6 levels when administered to wildtype mice, but not in the mice lacking NF-κB. Intriguingly, these metabolites have little effects on the activation of interferon regulatory factors (IRFs) for the production of type I interferons (IFNs) for antiviral defenses. These data suggest that circulating metabolites resulting from COVID-19 infection may act as effectors to elicit the peculiar systemic inflammatory responses, exhibiting severely strong proinflammatory cytokine production with limited induction of the interferons. Our study may provide a rationale for development of drugs to alleviate inflammation in COVID-19 patients.


Assuntos
Agmatina , COVID-19 , Interferon Tipo I , Animais , Antivirais/uso terapêutico , Citocinas/metabolismo , Fibroblastos/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Putrescina , SARS-CoV-2
7.
Cell Death Dis ; 13(4): 414, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487917

RESUMO

Midkine (MDK), a secreted growth factor, regulates signal transduction and cancer progression by interacting with receptors, and it can be internalized into the cytoplasm by endocytosis. However, its intracellular function and signaling regulation remain unclear. Here, we show that intracellular MDK interacts with LKB1 and STRAD to disrupt the LKB1-STRAD-Mo25 complex. Consequently, MDK decreases the activity of LKB1 to dampen both the basal and stress-induced activation of AMPK by glucose starvation or treatment of 2-DG. We also found that MDK accelerates cancer cell proliferation by inhibiting the activation of the LKB1-AMPK axis. In human cancers, compared to other well-known growth factors, MDK expression is most significantly upregulated in cancers, especially in liver, kidney and breast cancers, correlating with clinical outcomes and inversely correlating with phosphorylated AMPK levels. Our study elucidates an inhibitory mechanism for AMPK activation, which is mediated by the intracellular MDK through disrupting the LKB1-STRAD-Mo25 complex.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Midkina , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
8.
Nature ; 603(7899): 159-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197629

RESUMO

Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.


Assuntos
Hipoglicemiantes , Metformina , ATPases Vacuolares Próton-Translocadoras , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Caenorhabditis elegans/metabolismo , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Lisossomos/metabolismo , Proteínas de Membrana , Metformina/agonistas , Metformina/metabolismo , Metformina/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Cell Res ; 32(1): 54-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561619

RESUMO

The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética
10.
Nat Cell Biol ; 23(3): 268-277, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33664495

RESUMO

The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/inervação , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sistema Nervoso Simpático/fisiologia , Termogênese , Proteína Desacopladora 1/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , Fosforilação , Transdução de Sinais , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética
11.
Mol Cell Oncol ; 8(1): 1866975, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33553613

RESUMO

Remodeling of lipid metabolism has been implicated in cancers; however, it remains obscure how the lipid metabolic pathways are altered by oncogenic signaling to affect tumor development. We have recently shown that proto-oncogene tyrosine-protein kinase Src interacts with and phosphorylates the lipogenesis enzyme phosphatidate phosphatase LPIN1 to promote breast cancer development.

13.
Nat Commun ; 11(1): 5842, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203880

RESUMO

Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1-/- mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.


Assuntos
Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK/genética , Fosfatidato Fosfatase/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Lipogênese/fisiologia , Masculino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos Mutantes , Camundongos Transgênicos , Fosfatidato Fosfatase/genética , Fosforilação , Proto-Oncogene Mas , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Rev Mol Cell Biol ; 21(12): 714, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33060854
15.
Cell Chem Biol ; 27(11): 1359-1370.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32649904

RESUMO

Multidrug resistance (MDR) in cancer remains a major challenge for the success of chemotherapy. Natural products have been a rich source for the discovery of drugs against MDR cancers. Here, we applied high-throughput cytotoxicity screening of an in-house natural product library against MDR SGC7901/VCR cells and identified that the cyclodepsipeptide verucopeptin demonstrated notable antitumor potency. Cytological profiling combined with click chemistry-based proteomics revealed that ATP6V1G directly interacted with verucopeptin. ATP6V1G, a subunit of the vacuolar H+-ATPase (v-ATPase) that has not been previously targeted, was essential for SGC7901/VCR cell growth. Verucopeptin exhibited strong inhibition of both v-ATPase activity and mTORC1 signaling, leading to substantial pharmacological efficacy against SGC7901/VCR cell proliferation and tumor growth in vivo. Our results demonstrate that targeting v-ATPase via its V1G subunit constitutes a unique approach for modulating v-ATPase and mTORC1 signaling with great potential for the development of therapeutics against MDR cancers.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Depsipeptídeos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Depsipeptídeos/síntese química , Depsipeptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Subunidades Proteicas/efeitos dos fármacos , Proteômica , ATPases Vacuolares Próton-Translocadoras/metabolismo
16.
Cell Metab ; 31(3): 472-492, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130880

RESUMO

The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células/metabolismo , Nutrientes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Proliferação de Células , Dano ao DNA , Humanos
17.
Cell Metab ; 31(2): 217-218, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023445

RESUMO

Deficiency of glucose, even under sufficient amino acid supply, turns off translation and promotes catabolic processes to aid cell survival. A recent report by Yoon et al. (2020) shows that glucose is required for the full activity of the leucyl-tRNA synthetase LARS1 and maintains mTORC1 function via LARS1 to enhance translation. Glucose starvation abolishes both effects via phosphorylation of LARS1 by the AMPK-ULK1 signaling pathway. This study supports the idea that glucose starvation inhibits translation at multiple levels.


Assuntos
Aminoacil-tRNA Sintetases , Inanição , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Glucose , Humanos , Leucina
18.
Cell Metab ; 30(3): 508-524.e12, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204282

RESUMO

Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD+ levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Glucose/metabolismo , Canais de Cátion TRPV/metabolismo , Acrilamidas/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Transfecção
19.
Cell Res ; 29(6): 460-473, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948787

RESUMO

AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Nutrientes/metabolismo , Proteínas Quinases Ativadas por AMP/biossíntese , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fosforilação
20.
Cell Metab ; 28(5): 671-672, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30403985

RESUMO

Dietary carbohydrates have been demonized for presumed negative effects on health. However, Liu et al. (2018) identify new pathways for conversion of glucose into acetate that consume reactive oxygen species. A study relating human carbohydrate consumption to all-cause mortality also suggests that moderately high-carbohydrate diets can be beneficial.


Assuntos
Carboidratos da Dieta , Glucose , Acetatos , Animais , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA