Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bot Stud ; 65(1): 10, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514589

RESUMO

Sod culture (SC) and conventional agriculture (CA) represent two distinct field management approaches utilized in the cultivation of tea plants in Taiwan. In this study, we employed gas exchange and chlorophyll fluorescence techniques to assess the impact of SC and CA methods on the photosynthetic machinery of Camellia sinensis cv. TTES No.12 (Jhinhsuan) in response to variable light intensities across different seasons. In spring, at photosynthetic photon flux densities (PPFD) ranging from 800 to 2,000 µmol photon m-2 s-1, the net photosynthesis rate (Pn, 10.43 µmol CO2 m-2 s-1), stomatal conductance (Gs, 126.11 mmol H2O m-2 s-1), electron transport rate (ETR, 137.94), and ΔF/Fm' and Fv/Fm (50.37) values for plants grown using SC were comparatively higher than those cultivated under CA. Conversely, the non-photochemical quenching (NPQ) values for SC-grown plants were relatively lower (3.11) compared to those grown under CA at 800 to 2,000 PPFD in spring. Additionally, when tea plants were exposed to PPFD levels below 1,500 µmol photon m- 2 s- 1, there was a concurrent increase in Pn, Gs, ETR, and NPQ. These photosynthetic parameters are crucial for devising models that optimize cultivation practices across varying seasons and specific tillage requirements, and for predicting photosynthetic and respiratory responses of tea plants to seasonally or artificially altered light irradiances. The observed positive impacts of SC on maximum photosynthetic rate (Amax), Fv/Fm, Gs, water-use efficiency (WUE), and ETR suggest that SC is advantageous for enhancing the productivity of tea plants, thereby offering a more adaptable management model for tea gardens.

2.
MycoKeys ; 101: 275-312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333551

RESUMO

Pestalotiopsissensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsismanyueyuanani and four new records, N.camelliae-oleiferae, N.haikouensis, P.chamaeropis and P.hispanica, were reported for the first time in Taiwan. In addition, P.formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa.

3.
Environ Microbiol Rep ; 16(1): e13219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070178

RESUMO

Wolbachia is a ubiquitous endosymbiotic bacterium that manipulates insect reproduction. A notable feature of Wolbachia is male killing (MK), whereby sons of infected females are killed during development; however, the evolutionary processes by which Wolbachia acquired the MK ability remain unclear. The tea tortrix moth Homona magnanima (Tortricidae) harbours three non-MK Wolbachia strains (wHm-a, wHm-b and wHm-c) and an MK strain wHm-t. Although wHm-t and wHm-c are closely related, only wHm-t has an MK-associated prophage region. To understand the evolutionary processes underlying the emergence of MK wHm-t, we examined Wolbachia infections and phenotypes in 62 tortricid species collected from 39 localities across Japan, Taiwan, Vietnam and Indonesia. PCR assays detected wHm-c relatives in 51 species and triple infection of wHm-a, wHm-b and wHm-c in 31 species. Apart from Taiwanese H. magnanima, no species exhibited the MK phenotype and were positive for the wHm-t-specific prophage. While wHm-t infection was dominant in Taiwanese H. magnanima, wHm-a, wHm-b and wHm-c were dominant in Japanese H. magnanima populations. These results suggest that wHm-a, wHm-b and wHm-c strains descended from a common ancestor with repeated infection loss and that wHm-t evolved from the wHm-c acquiring MK ability in allopatric populations of H. magnanima.


Assuntos
Mariposas , Wolbachia , Animais , Feminino , Masculino , Mariposas/genética , Mariposas/microbiologia , Wolbachia/genética , Reprodução , Fenótipo , Bactérias , Simbiose
4.
iScience ; 26(6): 106842, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250803

RESUMO

Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.

5.
Appl Environ Microbiol ; 89(5): e0209522, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098937

RESUMO

Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.


Assuntos
Mariposas , Spiroplasma , Wolbachia , Animais , Feminino , Masculino , Simbiose , Larva/microbiologia , Reprodução , Apoptose , Wolbachia/genética , Spiroplasma/genética
6.
Chemosphere ; 310: 136865, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244422

RESUMO

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Assuntos
Alcaloides , Fertilizantes , Humanos , Fertilizantes/análise , Solo , Óleo de Rícino , Fluxo de Trabalho , Cromatografia Líquida , Alcaloides/análise , Espectrometria de Massas , Água/análise
7.
Plant Dis ; 107(1): 97-106, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35657715

RESUMO

Brown blight, a destructive foliar disease of tea, has become a highly limiting factor for tea cultivation in Taiwan. To understand the population composition of the causal agents (Colletotrichum spp.), the fungal diversity in the main tea-growing regions all over Taiwan was surveyed from 2017 to 2019. A collection of 139 Colletotrichum isolates was obtained from 14 tea cultivars in 86 tea plantations. Phylogenic analysis using the ribosomal internal transcribed spacer, glutamine synthetase gene, Apn2-Mat1-2 intergenic spacer, ß-tubulin, actin, calmodulin, and glyceraldehyde-3-phosphate dehydrogenase genes together with morphological characterization revealed three species associated with brown blight of tea; namely, Colletotrichum camelliae (95.6% of all isolates), C. fructicola (3.7%), and C. aenigma (0.7%). This is the first report of C. aenigma in Taiwan. The optimal growth temperatures were 25°C for C. camelliae and 25 and 30°C for C. fructicola and C. aenigma. Although C. fructicola and C. aenigma were more adapted to high temperature, C. camelliae was the most pathogenic across different temperatures. Regardless of whether spore suspensions or mycelial discs were used, significantly larger lesions and higher disease incidences were observed for wounded than for nonwounded inoculation and for the third and fourth leaves than for the fifth leaves. Wounded inoculation of detached third and fourth tea leaves with mycelial discs was found to be a reliable and efficient method for assessing the pathogenicity of Colletotrichum spp. within 4 days. Preventive application of fungicides or biocontrol agents immediately after tea pruning and at a young leaf stage would help control the disease.


Assuntos
Camellia sinensis , Colletotrichum , Camellia sinensis/microbiologia , Filogenia , Colletotrichum/genética , Virulência , Taiwan , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Chá
8.
Plants (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371637

RESUMO

Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.

9.
Plant Dis ; 105(2): 425-443, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32720884

RESUMO

Camellia sinensis (L.) O. Kuntze, commonly known as tea, is widely cultivated around the world in tropical and subtropical areas. Tea is mainly manufactured using young shoots of tea plants. Therefore, it is essential to control foliar diseases. Gray blight disease is caused by pestalotiopsis-like taxa and is known as one of the most destructive tea diseases. Although several studies have provided the groundwork for the fungal diseases associated with C. sinensis in Taiwan, gray blight disease has not been characterized based on diversity, molecular systematics, or pathogenicity. The goal of this study was to identify and characterize the causative agents of tea gray blight disease. A total of 98 pestalotiopsis-like isolates associated with symptomatic leaves of C. sinensis from major tea fields in Taiwan were investigated. Based on phylogenies of single and concatenated DNA sequences (internal transcribed spacer, ß-tubulin, translation elongation factor 1-α) together with morphology, we resolved most of the pestalotiopsis-like species in this study. The study revealed seven well-classified taxa and seven tentative clades in three genera: Pestalotiopsis, Pseudopestalotiopsis, and Neopestalotiopsis. One novel species, Pseudopestalotiopsis annellata, was introduced. Five new records, Pseudopestalotiopsis chinensis, Pseudopestalotiopsis camelliae-sinensis, Pestalotiopsis camelliae, Pestalotiopsis yanglingensis, and Pestalotiopsis trachicarpicola, were introduced for the first time in Taiwan. Pseudopestalotiopsis chinensis was the taxon most frequently isolated from C. sinensis in this study. Furthermore, results of pathogenicity assessments exhibited that, with wound inoculation, all assayed isolates in this study were pathogenic on tea leaves. Pseudopestalotiopsis chinensis and Pseudopestalotiopsis camelliae-sinensis were identified as the major pathogens associated with gray blight disease of tea in Taiwan. To our knowledge, this is the first study of the diversity, pathogenicity, and characterization of pestalotiopsis-like fungi causing tea gray blight disease in Taiwan.


Assuntos
Pestalotiopsis , Doenças das Plantas , Ascomicetos , Taiwan , Chá , Virulência
10.
Plant Dis ; 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897154

RESUMO

Tea (Camellia sinensis (L.) O. Kuntze) is a very popular beverage and cash crop that is widely cultivated in tropical and subtropical areas. In November 2017, diseased tea plants that exhibiting brown blight disease were observed in Guanxi Township of Hsinchu County in Taiwan. In the plantation,15% of tea trees (about 4000 plants) had an average of 20% of the leaves with at least one lesion. The symptoms began as small, water-soaked lesions on young leaves and twigs and later became larger, dark brown, necrotic lesions of 1 to 3 cm in diameter on leaves and 2 to 5 cm in length on twigs. Symptomatic leaf tissue (1 cm2) from five samples per sample) was surface sterilized with 1% NaClO (from commercial bleach, Clorox) for 1 min, washed with sterilized water 3 times, plated onto potato dextrose agar (PDA), and incubated under 12h/12h cycles of light and darkness at 25°C until sporulation to determine the causal agent. A fungus was consistently isolated from symptomatic leaf samples (80% isolation rate). The fungus initially produced white-to-gray fluffy aerial hyphae, which subsequently exhibited dark pigmentation. Acervuli and setae were absent. The conidia were hyaline, aseptate, smooth-walled, and cylindrical with obtuse to slightly rounded ends, with sizes of 12.10 to 16.02 × 3.58 to 4.91 (average 13.77 × 4.05, n = 30) µm. The majority had two rounded guttules. The appressoria were brown to dark brown, ovoid and slightly obtuse at the tip in shape, had lengths ranging from 3.59 to 10.31 µm (with an average of 7.18 µm, n = 30), and had diameters of 3.14 to 6.43 µm (with an average of 5.10 µm, n = 30). Morphological characteristics matched the descriptions of Colletotrichum fructicola (Liu et al. 2015; Fuentes-Aragón et al. 2018). The internal transcribed spacer of nuclear ribosomal DNA (ITS), actin (ACT), chitin synthase (CHS-1), and Apn2-Mat1-2 intergenic spacer and partial mating-type Mat1-2 gene (ApMAT) sequences of the isolates were obtained to confirm this identification. The sequences showed close identity with those of C. fructicola ex-type cultures ICMP18581 and CBS 130416 (Weir et al. 2012) of 99.65% for the ITS (JX010165), 99.29% for the ACT (JX009501), and 100.00% for the CHS-1 (JX009866), as well as close identity with the other ex-type culture LF506 (Liu et al. 2015) of 99.59% for the ApMat (KJ954567), supporting the isolate's identification as C. fructicola. The sequences were deposited in GenBank, with the following accession Nos.: MN608177 (ITS), MN393175 (ACT), MT087546 (CHS-1), and MT087542 (ApMAT). Based on morphology and DNA sequence analysis, the associated fungus was identified as C. fructicola. Pathogenicity tests were performed next according to the procedures described in Chen et al. (2017). Healthy leaves on tea plants (Ca. sinensis 'Chin-shin Oolong') were wounded by pinpricking in the middle of each counterpart and inoculated with conidial suspension (1 × 107 conidia/ml, 10 µl). Both non-wounded and wounded healthy leaves were inoculated with the conidial suspension and sterile distilled water (a water control). The tea plants were covered with plastic bags to maintain high relative humidity for two days. One week after inoculation, anthracnose was observed on 40% of inoculated leaves, whereas all the control leaves remained healthy. The fungus was re-isolated from the diseased plants, and identified as C. fructicola by resequencing of the four genes. To the best of our knowledge, this is the first report of anthracnose caused by C. fructicola on tea in Taiwan although the pathogen has been present in China and Indonesia (Wang et al. 2016; Shi et al. 2017; Farr and Rossman, 2020).

11.
Sci Rep ; 10(1): 12762, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728102

RESUMO

Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.


Assuntos
Ascomicetos/classificação , Biodiversidade , Camellia sinensis/microbiologia , Teorema de Bayes , DNA Intergênico , Ecossistema , Endófitos , Marcadores Genéticos , Genótipo , Funções Verossimilhança , Modelos Genéticos , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Taiwan
12.
Microb Ecol ; 79(4): 1011-1020, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31820073

RESUMO

Wolbachia are inherited intracellular bacteria that cause male-specific death in some arthropods, called male-killing. To date, three Wolbachia strains have been identified in the oriental tea tortrix Homona magnanima (Tortricidae, Lepidoptera); however, none of these caused male-killing in the Japanese population. Here, we describe a male-killing Wolbachia strain in Taiwanese H. magnanima. From field-collected H. magnanima, two female-biased host lines were established, and antibiotic treatments revealed Wolbachia (wHm-t) as the causative agent of male-killing. The wsp and MLST genes in wHm-t are identical to corresponding genes in the nonmale-killing strain wHm-c from the Japanese population, implying a close relationship of the two strains. Crossing the Japanese and Taiwanese H. magnanima revealed that Wolbachia genotype rather than the host genetic background was responsible for the presence of the male-killing phenotype. Quantitative PCR analyses revealed that the density of wHm-t was higher than that of other Wolbachia strains in H. magnanima, including wHm-c. The densities of wHm-t were also heterogeneous between host lines. Notably, wHm-t in the low-density and high-density lines carried identical wsp and MLST genes but had distinct lethal patterns. Furthermore, over 90% of field-collected lines of H. magnanima in Taiwan were infected with wHm-t, although not all host lines harboring wHm-t showed male-killing. The host lines that showed male-killing harbored a high density of Wolbachia compared to the host lines that did not show male-killing. Thus, the differences in the phenotypes appear to be dependent on biological and genetic characteristics of closely related Wolbachia strains.


Assuntos
Mariposas/microbiologia , Wolbachia/fisiologia , Animais , Proteínas de Insetos/análise , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Fenótipo , Fatores Sexuais , Razão de Masculinidade , Simbiose , Taiwan , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA