Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Curr Med Sci ; 44(1): 156-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302780

RESUMO

OBJECTIVE: Anthracycline-containing regimens are irreplaceable in neoadjuvant chemotherapy (NAC) for breast cancer (BC) at present. However, 30% of early breast cancer (EBC) patients are resistant to anthracycline-containing chemotherapy, leading to poor prognosis and higher mortality. Ki-67 is associated with the prognosis and response to therapy, and it changes after NAC. METHODS: A total of 105 BC patients who received anthracycline-containing NAC were enrolled. Then, the optimal model of Ki-67 was selected, and its predictive efficacy was analyzed. Immunohistochemistry (IHC) was used to determine the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) status and Ki-67 level. Fluorescent in situ hybridization (FISH) was used to verify the HER-2 when the IHC score was 2+. RESULTS: The post-NAC Ki67 level after treatment with anthracycline drugs was lower than pre-NAC Ki-67 (19.6%±23.3% vs. 45.6%±23.1%, P<0.001). Furthermore, patients with the Ki-67 decrease had a border line higher pathological complete response (pCR) rate (17.2% vs. 0.0%, P=0.068), and a higher overall response rate (ORR) (73.6% vs. 27.8%, P<0.001), when compared to patients without the Ki-67 decrease. The ΔKi-67 and ΔKi-67% were valuable markers for the prediction of both the pCR rate and ORR. The area under the curve (AUC) for ΔKi-67 on pCR and ORR was 0.809 (0.698-0.921) and 0.755 (0.655-0.855), respectively, while the AUC for ΔKi-67% on pCR and ORR was 0.857 (0.742-0.972) and 0.720 (0.618-0.822), respectively. Multivariate logistic regression model 1 revealed that ΔKi-67 was an independent predictor for both pCR [odds ratio (OR)=61.030, 95% confidence interval (CI)=4.709-790.965; P=0.002] and ORR (OR=10.001, 95% CI: 3.044-32.858; P<0.001). Multivariate logistic regression model 2 revealed that ΔKi-67% was also an independent predictor for both pCR (OR=408.922, 95% CI=8.908-18771.224; P=0.002) and ORR (OR=5.419, 95% CI=1.842-15.943; P=0.002). CONCLUSIONS: The present study results suggest that ΔKi67 and ΔKi67% are candidate predictors for anthracycline-containing NAC response, and that they may provide various information for further systematic therapy after surgery in clinical practice.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antígeno Ki-67/genética , Terapia Neoadjuvante , Hibridização in Situ Fluorescente , Antraciclinas/uso terapêutico
2.
Phytother Res ; 38(3): 1329-1344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194996

RESUMO

Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.


Assuntos
Compostos Alílicos , Produtos Biológicos , Alho , Neoplasias , Humanos , Antioxidantes/farmacologia , Apoptose , Sulfetos/farmacologia , Neoplasias/tratamento farmacológico , Compostos Alílicos/farmacologia , Produtos Biológicos/farmacologia
3.
Life Sci ; 334: 122189, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865178

RESUMO

AIMS: Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS: We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS: We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-ß1 (TGF-ß1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE: Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Colite/induzido quimicamente , Colite/terapia , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/terapia , Linfócitos T Reguladores , Imunidade , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Modelos Animais de Doenças
4.
Genes Dis ; 10(6): 2470-2478, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37554179

RESUMO

Lysine succinylation is a naturally occurring post-translational modification (PTM) that regulates the stability and function of proteins. It can be regulated by enzymes such as SIRT5 and SIRT7. Recently, the effect and significance of lysine succinylation in cancer and its implication in immunity have been extensively explored. Lysine succinylation is involved in the malignant phenotype of cancer cells. Abnormal regulation of lysine succinylation occurs in different cancers, and inhibitors targeting lysine succinylation regulatory enzymes can be used as potential anti-cancer strategies. Therefore, this review focused on the target protein lysine succinylation and its functions in cancer and immunity, in order to provide a reference for finding more potential clinical cancer targets in the future.

5.
Bioresour Technol ; 385: 129433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399965

RESUMO

The aim of this work was to study the impact of batch-fed strategies on bacterial communities and ARGs in compost. The findings demonstrate that batch-feeding helped maintain high temperatures in the compost pile for an extended period (above 50 °C for 18 days), which in turn facilitated water dissipation. High-throughput sequencing showed that Firmicutes played a significant role in batch-fed composting (BFC). They had a high relative abundance at the beginning (98.64%) and end (45.71%) of compost. Additionally, BFC showed promising results in removing ARGs, with reductions of 3.04-1.09 log copies/g for Aminoglycoside and 2.26-2.44 log copies/g for ß_Lactamase. This study provides a comprehensive survey of BFC and demonstrates its potential for eliminating resistance contamination in compost.


Assuntos
Compostagem , Eliminação de Resíduos , Antibacterianos/farmacologia , Genes Bacterianos , Alimentos , Esterco , Resistência Microbiana a Medicamentos/genética
6.
Transl Cancer Res ; 12(5): 1112-1127, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37304544

RESUMO

Background: Brain metastasis (BM) represents one of the most common advanced disease states in breast cancer (BC), especially in human epidermal growth factor receptor 2 (HER2)-positive BC, and is associated with poor survival outcomes. Methods: In this study, in-depth analysis of the microarray data from the GSE43837 dataset with 19 BM samples of HER2-positive BC patients and 19 HER2-positive nonmetastatic primary BC samples was conducted. The differentially expressed genes (DEGs) between BM and primary BC samples were identified and function enrichment analysis of the DEGs was conducted to identify potential biological functions. The hub genes were identified by constructing the protein-protein interaction (PPI) network using STRING and Cytoscape. UALCAN and Kaplan-Meier plotter online tools were used to verify the clinical roles of the hub DEGs in HER2-positive BC with BM (BCBM). Results: A total of 1,056 DEGs including 767 downregulated and 289 upregulated genes were identified by comparing the microarray data of the HER2-positive BM and primary BC samples. Functional enrichment analysis demonstrated that the DEGs were mainly enriched in pathways related to extracellular matrix (ECM) organization, cell adhesion, and collagen fibril organization. PPI network analysis identified 14 hub genes. Among these, CD44, COL1A2, MMP14, POSTN, and SOX9 were associated with the survival outcomes of HER2-positive patients. Conclusions: In summary, 5 BM-specific hub genes were identified in the study; those are potential prognostic biomarkers and therapeutic targets for HER2-positive BCBM patients. However, further investigations are necessary to unravel the mechanisms by which these 5 hub genes regulate BM in HER2-positive BC.

7.
Cell Mol Immunol ; 20(7): 739-776, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198402

RESUMO

Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.


Assuntos
COVID-19 , Medicina de Precisão , Humanos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , COVID-19/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Epigênese Genética
8.
Acta Pharm Sin B ; 13(5): 2086-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250150

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

9.
Arch Med Sci ; 19(1): 264-269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817685

RESUMO

Introduction: Colorectal cancer (CRC) is the third most common cancer. Precise prediction of CRC patients' overall survival (OS) probability could offer advice on its treatment. Neural network (NN) is the first-class algorithm, but a consensus on which NN survival models are better has not been established yet. A predictive model on CRC using Asian data is also lacking. Methods: We conducted 8 NN survival models of CRC (n = 416) with different theories and compared them using Asian data. Results: DeepSurv performed best with a C-index value of 0.8300 in the training cohort and 0.7681 in the test cohort. Conclusions: The deep learning survival model for CRC patients (DeepCRC) could predict CRC's OS accurately.

10.
Int J Biol Sci ; 19(3): 832-851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778111

RESUMO

Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has brought significant benefits to non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, most patients eventually develop acquired resistance after treatment. This study investigated the epigenetic effects of mucin 17 (MUC17) in acquired drug-resistant cells of EGFR-TKIs. We found that GR/OR (gefitinib/osimertinib-resistance) cells enhance genome-wide DNA hypermethylation, mainly in 5-UTR associated with multiple oncogenic pathways, in which GR/OR cells exerted a pro-oncogenic effect by downregulating mucin 17 (MUC17) expression in a dose- and time-dependent manner. Gefitinib/osimertinib acquired resistance mediated down-regulation of MUC17 by promoting DNMT1/UHRF1 complex-dependent promoter methylation, thereby activating NF-κB activity. MUC17 increased the generation of IκB-α and inhibit NF-κB activity by promoting the expression of MZF1. In vivo results also showed that DNMT1 inhibitor (5-Aza) in combination with gefitinib/osimertinib restored sensitivity to OR/GR cells. Acquired drug resistance of gefitinib/osimertinib promoted UHRF1/DNMT1 complex to inhibit the expression of MUC17. MUC17 in GR/OR cells may act as an epigenetic sensor for biomonitoring the resistance to EGFR-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação para Baixo/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacologia , Mutação , Linhagem Celular Tumoral , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
11.
J Surg Res ; 277: 67-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35468403

RESUMO

INTRODUCTION: In clinical practice, some patients undergoing surgery for thymoma require post-surgical ventilator support, although, factors associated with administration of ventilator support are unclear. This study aimed to explore factors associated with incidence of post-surgical severe respiratory failure requiring ventilator support after thymoma resection. METHODS: Clinical data of patients who underwent thymoma re-section in our thoracic surgery department between January 2001 and February 2020 was retrospectively analyzed. Multiple logistic regression analysis was used to identify factors associated with patient need for post-surgical ventilator support after thymoma resection. RESULTS: Among 157 patients who underwent thymoma resection, 17.8% (28/157) required post-surgical ventilator support. Results of univariate analysis revealed that gender, myasthenia gravis (MG) grade, anti-MG medication use (neostigmine or prednisone), Masaoka thymoma stage, pulmonary function test index values, surgical approach, and intraoperative blood loss were associated with increased incidence of severe respiratory failure requiring post-operative ventilator support (P < 0.05). Results of multivariable logistic regression analysis revealed that median sternotomy, MG grade three status, and patient use of anti-MG drug treatments before thymoma resection surgery were associated with greater need for post-surgical ventilator support. CONCLUSIONS: Our data suggest that median sternotomy, MG grade three status, and preoperative use of anti-MG drugs are associated with greater incidence of severe respiratory failure requiring respiratory support after thymoma surgery. Therefore, patients with these risk factors should be closely monitored to reduce the incidence of severe postoperative respiratory failure.


Assuntos
Miastenia Gravis , Insuficiência Respiratória , Timoma , Neoplasias do Timo , Humanos , Miastenia Gravis/cirurgia , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Estudos Retrospectivos , Timoma/complicações , Timoma/cirurgia , Neoplasias do Timo/complicações , Neoplasias do Timo/cirurgia , Ventiladores Mecânicos/efeitos adversos
12.
Front Oncol ; 12: 831268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC. Methods: The expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing. Results: PRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low ) to very high (PRSS3High ) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow ) and hypomethylated high-expression (umPRSS3-SVHigh ) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome. Conclusions: These results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.

13.
Oncol Rep ; 45(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786615

RESUMO

Disruption in mucins (MUCs) is involved in cancer development and metastasis and is thus used as a biomarker. Non­small cell lung carcinoma (NSCLC) is characterized by heterogeneous genetic and epigenetic alterations. Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the two primary subtypes of NSCLC that require different therapeutic interventions. Here, we report distinct expression and epigenetic alterations in mucin 22 (MUC22), a new MUC family member, in LUSC vs. LUAD. In lung cancer cell lines and tissues, MUC22 was downregulated in LUSC (MUC22Low) but upregulated in LUAD (MUC22High) with co­expression of MUC21. The aberrant expression of MUC22 was inversely correlated with its promoter hypermethylation in LUSC and hypomethylation in LUAD cells and tissues, respectively. Decreased MUC22 expression in NSCLC cell lines was restored upon treatment with epigenetic modifiers 5­aza­2'­deoxycytidine (5­Aza) or trichostatin A (TSA), accompanied by reduction in global protein level of histone deacetylase 1 (HDAC1) but increased enrichment of histone H3 lysine 9 acetylation (H3K9ac) specifically in the MUC22 promoter in the SK­MES­1 cell line. MUC22 knockdown increased the growth and motility of lung cancer cells and an immortalized human bronchial epithelial BEAS­2B cell line via NF­κB activation. Clinically, MUC22Low in LUSC and MUC22High in LUAD were shown to be indicators of unfavorable overall survival for patients with early cancer stages. Our study reveals that changes in MUC22 expression due to epigenetic alterations in NSCLC may have important biological significance and prognostic potential in LUSC when compared to LUAD. Thus, MUC22 expression and epigenetic alterations may be used for molecular subtyping of NSCLC in precision medicine.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Mucinas/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Heterogeneidade Genética , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Medicina de Precisão/métodos , Prognóstico , Regiões Promotoras Genéticas/genética , RNA-Seq , Regulação para Cima , Adulto Jovem
14.
Gastric Cancer ; 24(2): 314-326, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111209

RESUMO

BACKGROUND: Hydrogen/potassium ATPase ß (ATP4B) is a proton pump acting an essential role in gastric acid secretion. This study aimed to investigate the diagnostic performance of ATP4B and its biological role in tumor progression in gastric cancer. METHODS: The correlations between ATP4B expression level and clinicopathologic parameters, as well as the relevance of ATP4B expression with overall survival were assessed. The functional roles of ATP4B in gastric cancer were verified by gain- and loss-of-function cell models and tumor xenograft models. The possible downstream effects of ATP4B were analyzed by iTRAQ-based quantitative proteomics analysis. RESULTS: A dramatic decrease in ATP4B was associated with malignant transformation in gastric mucosa lesions and correlated with poor differentiation. Restoration of ATP4B expression in gastric cancer cells significantly suppressed cell proliferation, cell viability, migration, invasion, tumorigenicity and induced apoptosis, whereas ATP4B silencing exerted the opposite effects. Mechanistically, we found a quality control on mitochondrial metabolism and functions in ATP4B-overexpression GC cells. CONCLUSIONS: Our data suggest that decreasing ATP4B is an indicator for gastric mucosa malignant transformation and GC aggressive phenotype and it plays an inhibitory role in gastric cancer as a tumor suppressor via regulating mitochondrial metabolism and apoptosis pathway.


Assuntos
Mucosa Gástrica/patologia , Gastrite Atrófica/genética , Genes Supressores de Tumor/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Neoplasias Gástricas/genética , Atrofia , Biomarcadores Tumorais/genética , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Feminino , Mucosa Gástrica/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico
15.
Nat Commun ; 11(1): 5912, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219235

RESUMO

The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D-/- mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D-/- mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. An initial equilibrium of microbiota in cohoused WT and Fam3D-/- mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition.


Assuntos
Carcinogênese , Colo , Citocinas/metabolismo , Animais , Colite , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação , Doenças Inflamatórias Intestinais , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/patologia , Camundongos , Proteínas Citotóxicas Formadoras de Poros/metabolismo
16.
Nat Commun ; 10(1): 2037, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048690

RESUMO

Genome-wide analysis of genomic signatures might reveal novel mechanisms for gastric cancer (GC) tumorigenesis. Here, we analysis structural variations (SVs) and mutational signatures via whole-genome sequencing of 168 GCs. Our data demonstrates diverse models of complex SVs operative in GC, which lead to high-level amplification of oncogenes. We find varying proportion of tandem-duplications (TDs) among individuals and identify 24 TD hotspots involving well-established cancer genes such as CCND1, ERBB2 and MYC. Specifically, we nominate a novel hotspot involving the super-enhancer of ZFP36L2 presents in approximately 10% GCs from different cohorts, the oncogenic role of which is further confirmed by experimental data. In addition, our data reveal a mutational signature, specifically occurring in noncoding region, significantly enriched in tumors with cadherin 1 mutations, and associated with poor prognoses. Collectively, our data suggest that TDs might serve as an important mechanism for cancer gene activation and provide a novel signature for stratification.


Assuntos
Oncogenes/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Caderinas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Éxons/genética , Feminino , Duplicação Gênica/genética , Variação Estrutural do Genoma , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estômago/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Sequenciamento Completo do Genoma
17.
Gastric Cancer ; 22(5): 941-954, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30778796

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori invades the mucosal barrier and infects the mucins of gastric epithelial cells. However, whether gastric carcinogenesis caused by H. pylori infection involves the membrane-bound mucins is unclear. This study explored the role of mucin 17 (MUC17) in gastric cancer (GC) associated with H. pylori infection. METHODS: The expression of MUC17 and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was examined in human GC cells and tissues with H. pylori infection. Gain- and loss-of-function assays were performed to assess the role of MUC17 in regulating CEACAM1 in H. pylori-infected GC cells. RESULTS: MUC17 was downregulated in H. pylori-infected GC cells and tissues in association with poor survival of GC patients. Downregulation of MUC17 was attributable to MUC17 promoter methylation mediated by DNA methyltransferase 1 (DNMT1) H. pylori-enhanced GC cell proliferation and colony formation associated with MUC17 downregulation. Gain- and loss-of-function assays showed that MUC17 inhibited the H. pylori-enhanced GC cell growth by preventing the translocation of H. pylori CagA into GC cells. Moreover, MUC17 downregulated the expression of CEACAM1 variant 3S (CEACAM1-3S) in GC cells and tissues with H. pylori infection. Additionally, MUC17 downregulated CEACAM1 promoter activity via attenuation of NF-κB activation in GC cells. CONCLUSIONS: MUC17 was epigenetically downregulated in GC with H. pylori infection. MUC17 inhibited H. pylori CagA translocation via attenuation of NF-κB-mediated expression of CEACAM1-3S in GC cells. Thus, MUC17 may serve as a valuable prognostic biomarker for H. pylori-associated GC.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/complicações , Mucinas/metabolismo , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/genética , Proliferação de Células , Feminino , Seguimentos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Mucinas/genética , NF-kappa B/genética , Prognóstico , Regiões Promotoras Genéticas , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Taxa de Sobrevida , Células Tumorais Cultivadas
18.
Gastric Cancer ; 22(2): 302-313, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30178386

RESUMO

BACKGROUND: Recurrence is a primary cause of gastric cancer (GC)-related deaths. We reported previously that low expression of miR-142-5p could predict recurrence in GC. The present study aimed to investigate the function and mechanism of miR-142-5p in metastasis of GC. METHODS: MiR-142-5p expression was detected in 101 GC samples by qRT-PCR. Its clinical significance was statistically analyzed. The roles of miR-142-5p and its candidate target gene CYR61 in metastasis were determined both in vivo and in vitro. RESULTS: MiR-142-5p downregulation was significantly associated with the recurrence (P = 0.031) and poor prognosis of GC (P = 0.043). MiR-142-5p inhibited cancer cell migration and invasion both in vitro and in vivo. CYR61 was identified as a novel direct target of miR-142-5p by bioinformatics analysis of target prediction and luciferase reporter assay. The re-expression and knockdown of CYR61 could, respectively, rescue the effects induced by miR-142-5p overexpression and knockdown. MiR-142-5p attenuated GC cell migration and invasion, at least partially, by inactivation of the canonical Wnt/ß-catenin signaling pathway through CYR61. CONCLUSIONS: The newly identified miR-142-5p-CYR61-Wnt/ß-catenin axis partially illustrates the molecular mechanism of GC recurrence and represents a novel prognosis biomarker for GC.


Assuntos
Proteína Rica em Cisteína 61/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/análise , Regulação para Baixo , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Via de Sinalização Wnt/fisiologia
19.
Clin Cancer Res ; 25(3): 1050-1062, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301827

RESUMO

PURPOSE: Metallothionein 2A (MT2A) suppresses the progression of human gastric cancer potentially through an "MT2A-NF-κB pathway" with unclear mechanisms. This study explored the role of a transcription factor, myeloid zinc-finger 1 (MZF1), in MT2A-NF-κB pathway and its clinical significance in gastric cancer. EXPERIMENTAL DESIGN: MZF1 expression and function in gastric cancer were investigated in vitro and in vivo. The relationship between MZF1 and MT2A was determined by gain-of-function and loss-of-function assays in gastric cancer cells and an immortalized gastric cell line GES-1. The prognostic value of MZF1 expression in association with MT2A was evaluated using IHC in two cohorts. RESULTS: MZF1 was epigenetically silenced in human gastric cancer cell lines and primary tumors. Overexpression of MZF1 in gastric cancer cells suppressed cell proliferation and migration, as well as the growth of xenograft tumors in nude mice. Knocking-down of MZF1 transformed GES-1 cells into a malignant phenotype characterized by increased cell growth and migration. Mechanistically, MZF1 was upregulated in both GC and GES-1 cells by MT2A ectopically expressed or induced upon treatment with a garlic-derived compound, diallyl trisulfide (DATS). MZF1 associated with MT2A was colocalized in the nuclei of GES-1 cells to target the promoter of NF-κB inhibitor alpha (NFKBIA). Clinically, MT2A and MZF1 were progressively downregulated in clinical specimens undergoing gastric malignant transformation. Downregulation of MT2A and MZF1 was significantly correlated with poorer patient prognosis. CONCLUSIONS: MT2A exerts its anti-gastric cancer effects by complexing with MZF1 to target NFKBIA. MT2A/MZF1 may serve as a valuable prognostic marker and a novel therapeutic target for human gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Metalotioneína/genética , Neoplasias Gástricas/genética , Animais , Carcinogênese/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Metalotioneína/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , Terapêutica com RNAi/métodos , Transdução de Sinais/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
J Mol Med (Berl) ; 95(11): 1237-1249, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844099

RESUMO

Protease, serine, 3 (PRSS3), a member of the trypsin family of serine proteases, has been shown to be aberrantly expressed in several cancer types and to play important roles in tumor progression and metastasis. However, the expression and function of PRSS3 gene in hepatocellular carcinoma (HCC) remain unclear. Here we found that PRSS3 expression was decreased in human HCC cell lines and HCC surgical specimens. This was associated with intragenic methylation of PRSS3 gene. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A restored PRSS3 expression in HCC cell lines. Ectopic overexpression of PRSS3 gene in HCC cell lines significantly suppressed cell proliferation and colony formation and arrested cell cycle at G1/S phase, accompanied with downregulation of cyclin D1 (CCND1)/CDK4 and cyclin E1 (CCNE1)/CDK2 complexes. Moreover, PRSS3 overexpression in HCC cells inhibited HCC cell migration and invasion with downregulation of matrix metallopeptidase 2 (MMP2). Further study showed that PRSS3 overexpression diminished the phosphorylation of mitogen-activated protein kinase/extracellular-signal-regulated kinase signaling protein, mitogen-activated protein kinase kinase 1 (MEK1)/mitogen-activated protein kinase kinase 2 (MEK2) and extracellular-signal related kinase 1 (ERK1)/extracellular-signal related kinase 2 (ERK2), in HCC cells. In contrast, knockdown of PRSS3 by small interfering RNA resulted in opposite effects on an HCC cell line SNU-387 which constitutively expresses PRSS3. These results demonstrate that downregulation of PRSS3 by intragenic hypermethylation provides growth and metastasis advantage to HCC cells. The clinical relevance of PRSS3 to human HCC was shown by the intragenic methylation of PRSS3 in HCC specimens and its association with poor tumor differentiation in patients with HCC. Thus, PRSS3 is a potential prognostic biomarker and an epigenetic target for intervention of human HCC. KEY MESSAGES: • PRSS3 is downregulated by intragenic hypermethylation in HCC. • Epigenetic silencing of PRSS3 facilitates growth, migration, and invasion of HCC. • PRSS3 intragenic methylation has implication in diagnosis of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Tripsina/genética , Adulto , Idoso , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Metilação de DNA , Feminino , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA