Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Purinergic Signal ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771429

RESUMO

Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.

3.
Purinergic Signal ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153612

RESUMO

More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.

4.
Int J Clin Pract ; 2023: 1489905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497125

RESUMO

Objective: In this study, we aimed to explore the efficacy of the autologous platelet-rich plasma (PRP) interventional circulatory perfusion combined with radiofrequency ablation and thermocoagulation (RFAT) in the treatment of discogenic low back pain (DLBP). Methods: From January 2020 to November 2022, 158 patients of the Second Affiliated Hospital of Nanchang University were selected as the study subjects, and 24 patients met the exclusion criteria. The 134 patients who met the inclusion criteria were divided into 65 patients in the control group (3 patients lost to follow-up) and 69 patients in the observation group (5 patients lost to follow-up), so 126 patients were actually completed the study, including 62 patients in the control group and 64 patients in the observation group. The control group responsible disc received RFAT, and an interventional circulatory perfusion was performed; the observation group received RFAT, and an interventional circulatory perfusion was performed, and then autologous PRP 2 ml was injected. Visual Analog Scale (VAS) and Oswestry Disability Index (ODI) were performed before and 4 and 8 weeks after treatment, and the efficacy was evaluated at 4 and 8 weeks after treatment. The changes of lumbar disc MRI before and after treatment were observed. Results: The differences in the Visual Analog Scale (VAS) scores and the Oswestry Disability Index (ODI) between the observation group and the control group before the treatment were not statistically significant (P > 0.05 in both). However, four weeks and eight weeks after the treatment, the VAS scores and the ODIs were significantly lower in both groups than those before the treatment (P < 0.05 in both). In terms of the therapeutic efficacy, eight weeks after the treatment, the total effective rates in the control group and the observation group were 67.7% and 87.5%, respectively, with the observation group being superior to the control group (P < 0.05). Conclusion: After RFAT, interventional circulatory perfusion combined with autologous PRP intramedullary injection in the lumbar disc is a safe and effective treatment for DLBP, and it had superior long-term effects in improving the clinical symptoms and patient dysfunction than the RFAT and interventional circulatory perfusion.


Assuntos
Dor Lombar , Plasma Rico em Plaquetas , Ablação por Radiofrequência , Humanos , Dor Lombar/terapia , Resultado do Tratamento , Eletrocoagulação , Perfusão , Vértebras Lombares/cirurgia
5.
Brain Res Bull ; 190: 42-49, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113681

RESUMO

The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.


Assuntos
Trifosfato de Adenosina , Isquemia Encefálica , Humanos , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X/metabolismo , Microglia/metabolismo , Isquemia Encefálica/metabolismo , Neurônios , Infarto Cerebral , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X4/metabolismo
6.
Cell Cycle ; 18(20): 2727-2741, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432728

RESUMO

Objectives: Long noncoding RNA (lncRNA) SBF2-AS1 was found to be related to some tumors. Nevertheless, the role of SBF2-AS1 in osteosarcoma (OS) is still needed to be elaborated. This study is conducted to examine the expression of lncRNA SBF2-AS1 in OS with the involvement of microRNA-30a (miR-30a) and FOXA1. Methods: OS tissues and its corresponding adjacent normal tissues were obtained for the detection of SBF2-AS1 expression and its relations with clinical phenotypes. OS cells with most significant expression of SBF2-AS1 were selected for subsequent experiments. Moreover, a series of experiments were performed to detect proliferation, invasion, migration, colony formation, cell cycle distribution and apoptosis of OS cells. Furthermore, the binding site between SBF2-AS1 and miR-30a as well as between miR-30a and FOXA1 was verified. Results: SBF2-AS1 was overexpressed in tissues and cells of OS. Additionally, silencing of SBF2-AS1 and miR-30a overexpression inhibited the proliferation, migration and invasion of OS cells and promoted their apoptosis. Moreover, lncRNA SBF2-AS1 regulated miR-30a by serving as a ceRNA, thus promoting FOXA1 expression. Furthermore, interfered SBF2-AS1 or upregulated miR-30a restrained the growth of OS. Conclusion: Our study confirms that silencing of SBF2-AS1 represses proliferation, migration and invasion of OS cells and promotes their apoptosis by binding to miR-30a and inhibiting FOXA1 expression.


Assuntos
Apoptose/genética , Neoplasias Ósseas/genética , Movimento Celular/genética , Proliferação de Células/genética , Fator 3-alfa Nuclear de Hepatócito/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , RNA Longo não Codificante/metabolismo , Adolescente , Adulto , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Inativação Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Transplante Heterólogo , Regulação para Cima
7.
PLoS One ; 11(12): e0166751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28033335

RESUMO

Cortex Eucommiae is used worldwide in traditional medicine, various constituents of Cortex Eucommiae, such as chlorogenic acid (CGA), has been reported to exert anti-osteoporosis activity in China, but the mechanism about their contribution to the overall activity is limited. The aims of this study were to determine whether chlorogenic acid can prevent estrogen deficiency-induced osteoporosis and to analyze the mechanism of CGA bioactivity. The effect of CGA on estrogen deficiency-induced osteoporosis was performed in vivo. Sixty female Sprague-Dawley rats were divided randomly among a sham-operated group and five ovariectomy (OVX) plus treatment subgroups: saline vehicle, 17α-ethinylestradiol (E2), or CGA at 9, 27, or 45 mg/kg/d. The rats' femoral metaphyses were evaluated by micro-computed tomography (µCT). The mechanism of CGA bioactivity was investigated in vitro. Bone mesenchymal stem cells (BMSCs) were treated with CGA, with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002. BMSCs proliferation and osteoblast differentiation were assessed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase, with or without Shp2 interfering RNA (RNAi). The results display that CGA at 27 and 45 mg/kg/day inhibited the decrease of bone mineral density (BMD) that induced by OVX in femur (p< 0.01), significantly promoted the levels of bone turnover markers, and prevented bone volume fraction (BV/TV), connectivity density (CoonD), trabecular number (Tb.N), trabecular thickness (Tb.Th) (all p< 0.01) to decrease and prevented the trabecular separation (Tb.Sp), structure model index (SMI)(both p< 0.01) to increase. CGA at 1 or 10 µM enhanced BMSC proliferation in a dose-dependent manner. CGA at 0.1 to 10 µM increased phosphorylated Akt (p-Akt) and cyclin D1. These effects were reversed by LY294002. CGA at 1 or 10 µM increased BMSC differentiation to osteoblasts (p< 0.01), Shp2 RNAi suppressed CGA-induced osteoblast differentiation by decreasing Shp2, p-Akt, and cyclin D1. This study found that CGA improved the BMD and trabecular micro-architecture for the OVX-induced osteoporosis. Therefore, CGA might be an effective alternative treatment for postmenopausal osteoporosis. CGA promoted proliferation of osteoblast precursors and osteoblastic differentiation of BMSCs via the Shp2/PI3K/Akt/cyclin D1 pathway.


Assuntos
Densidade Óssea/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/prevenção & controle , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Ciclina D1/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Morfolinas/farmacologia , Osteoblastos/metabolismo , Ovariectomia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
8.
Mol Med Rep ; 11(6): 4489-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25634525

RESUMO

Chlorogenic acid (CGA) exhibits various biological properties, including the inhibition of oxidation, obesity, apoptosis and tumorigenesis. CGA is also able to promote cell survival and proliferation. The aim of the present study was to determine the effects and underlying molecular mechanisms of CGA on the adipogenesis of bone marrow­derived mesenchymal stem cells (BMSCs). Treatment with CGA had a marginal effect on cell proliferation, by promoting the expression levels of phosphorylated Akt and cyclin D1. Furthermore, treatment with CGA also upregulated the phosphorylation of extracellular signal­regulated kinase (Erk) and inhibited the adipocyte differentiation of BMSCs by inhibiting the expression of peroxisome proliferator­activated receptor (PPAR)γ and CCAAT/enhancer binding protein (C/EBP)α. However, knockdown of the expression of Shp2 attenuated CGA­induced proliferation and inhibited the phosphorylation of Akt and expression of cyclin D1. Furthermore, CGA treatment upregulated Erk phosphorylation and decreased the expression levels of PPARγ and CEBPα, which was inhibited by treatment with the Shp2 PTPase activity inhibitor, NSC­87877. The results of the present study suggested that CGA­induced Akt and Erk pathways regulate proliferation and differentiation and that Shp2 is important in the proliferation and differentiation of BMSCs.


Assuntos
Adipogenia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Células-Tronco Mesenquimais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Adulto , Células da Medula Óssea/citologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclina D1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA