RESUMO
PURPOSE: To identify whether p16 status or response to induction chemotherapy (IC) predicts the radiotherapy (RT) response and survival outcomes in Chinese oropharyngeal squamous cell carcinoma (OPSCC). METHODS: A total of 211 patients, including 128 p16-positive and 83 p16-negative were analyzed. All patients underwent IC followed by definitive RT or concurrent chemoradiotherapy (CCRT). Propensity score matching (PSM) was used to eliminate the baseline variations. RESULTS: Age, sex, smoking history, alcohol history, and primary site were unbalanced between different p16 status subgroups. Before PSM, the objective response rates to IC between p16-positive and p16-negative groups were 80.5 % and 85.5 % (p = 0.344). After RT, the complete response (CR) rates were 73.4 % and 66.3 %, respectively (p = 0.264). IC-sensitive (IC-s) subgroups had a higher percentage of RT-CR rate than the IC-resistant (IC-r) subgroups in both p16-positive and p16-negative patients. IC-s showed significant improvement in cancer-specific survival (CSS) (92.9 % vs. 53.6 %, p < 0.0001), progression-free survival (PFS) (p < 0.0001), locoregional relapse-free survival (LRFS) (p < 0.0001) and distant metastasis-free survival (DMFS) (p = 0.025). After PSM, the CR rates among different p16 groups remained comparable following RT (71.2 % vs. 65.8 %, p = 0.476). Before or after PSM, CSS, PFS, LRFS, and DMFS were similar between different p16 status either in IC-s or IC-r subgroups (p > 0.05). IC-r was independently associated with shorter PFS (HR = 2.661, p = 0.002) and LRFS (HR = 2.876, p = 0.002; HR = 2.78, p = 0.018). CONCLUSIONS: Response to IC is an important predictor of prognosis in Chinese OPSCC treated with definitive RT. Poor response to IC is associated with unsatisfactory outcomes either in p16-positive or p16-negative OPSCC.
RESUMO
Jerusalem artichoke leaf protein (JALP) has limited applications because of its dark color, even though Jerusalem artichoke is a cash crop. This study utilized high-intensity ultrasound (HIUS) (≤ 600 W) to modify the physicochemical characteristics and functional properties of JALP. Compared with the JALP, all the HIUS-treated JALP (UJALP) samples had a lighter brown color, higher absolute ζ-potential value, lower Z-average size, higher surface hydrophobicity, higher water solubility, lower turbidity, more -SH group, and higher water-holding, oil-holding, emulsifying and foaming capacities. The HIUS treatment disrupted certain non-covalent and SS bonds, promoted protein depolymerization, change protein secondary structures, causing partial unfolding of protein and exposure of some charged groups, hydrophobic groups and chromophores (like tryptophan and tyrosine). The UJALP-stabilized corn oil-in-water emulsions (UJALPEs) were more stable than the JALP-stabilized emulsion (JALPE). The bioaccessibility of curcumin in the JALPE (56.38 %) was significantly lower than in the UJALPE-600 W (64.59 %).
RESUMO
To explore and utilize the abundant soil microorganisms and their beneficial functions, high-throughput sequencing technology was used to analyze soil microbial compositions in the rhizosphere of red and green amaranth varieties. The results showed that significant differences in soil microbial composition could be found in the rhizosphere of amaranth plants with different color phenotypes. Firstly, soil bacterial compositions in the rhizosphere were significantly different between red and green amaranths. Among them, Streptomyces, Pseudonocardia, Pseudolabrys, Acidibacter, norank_ f_ Micropepsaceae, Bradyrhizobium, and Nocardioides were the unique dominant soil bacterial genera in the rhizosphere of red amaranth. In contrast, Conexibacter, norank_f_norank_o_norank_c_TK10, and norank_f_ norank_o_ norank_ c_AD3 were the special dominant soil bacterial genera in the rhizosphere of green amaranth. Additionally, even though the soil fungal compositions in the rhizosphere were not significantly different between red and green amaranths, the abundance of the dominant soil fungal genera in the rhizosphere showed significant differences between red and green amaranths. For example, unclassified_k__Fungi, Fusarium, Cladophialophora, unclassified_c__Sordariomycetes and unclassified_p__Chytridiomycota significantly enriched as the dominant soil fungal genera in the rhizosphere of the red amaranth. In contrast, Aspergillues only significantly enriched as the dominant soil fungal genus in the rhizosphere of green amaranth. All of the above results indicated that amaranth with various color phenotypes exactly recruited different microorganisms in rhizosphere, and the enrichments of soil microorganisms in the rhizosphere could be speculated in contributing to amaranth color formations.
RESUMO
Background: We aimed to explore the differences in plasma biomarker levels between patients with familial cerebral cavernous malformations (FCCM) and their healthy first-degree relatives (FDRs) and between FCCM patients with and without severe chronic disease aggressiveness (CDA). Methods: Magnetic resonance imaging (MRI) scanning and genetic testing was performed in patients with multiple CCMs and their FDRs. Sixty-seven plasma biomarkers were tested using a customised multiplex bead immunoassay kit. Univariate and multivariate unconditional logistic regression analyses were conducted to determine the associations between plasma factors and the risk of developing FCCM and severe CDA. Receiver operating characteristic (ROC) curves were generated for each independent risk factor. Results: Plasma factors of 37 patients with FCCM and 37 FDRs were examined. Low CD31 (P < 0.001) and BDNF levels (P = 0.013) were independent risk factors for FCCM. The best model was achieved by combining the results of CD31 and BDNF (AUC = 0.845, sensitivity 0.838, specificity 0.784, cutoff score - 4.295) to distinguish patients with FCCM from healthy FDRs. Low serpin E1/PAI-1 (P = 0.011) and high ROBO4 levels (P = 0.013) were independent risk factors for severe CDA in patients with FCCM. The best model was achieved by combining the results of E1/PAI-1 and ROBO4 levels (AUC = 0.913, sensitivity 1.000, specificity 0.760, cutoff score - 0.525) to identify patients with FCCM and severe CDA. Conclusions: The plasma concentrations of CD31 and BDNF seem to be lower in patients with FCCM than in their healthy FDRs. Low serpin E1/PAI-1 and high ROBO4 concentrations may be correlated with high lesion burden and risk of recurrent bleeding.
RESUMO
Hepatitis B virus (HBV) acts as a severe public health threat, causing chronic liver diseases. Although the quantified evaluation of HBV infection can be obtained by estimating the capacity of the HBV DNA genome, it still lacks an effective and robust detection method without using enzymes or chemical labeling. Herein, we have designed a binary split fluorescent DNA aptasensor (bsFDA) by rationally splitting the lettuce aptamer into two functional DNA short chains and utilizing the HBV DNA segment complementary sequences (HDs). In this strategy, the bsFDA has been investigated to specifically recognize the HDs, forming a triplex DNA with the lettuce aptamer structure. Meanwhile, the turn-on fluorescence of bsFDA is obtained upon formation of a fluorescent complex between DFHO and the triplex DNA structure, allowing the enzyme-free, label-free, fast-responsive, and reliable fluorescence readout for detecting HDs and the potential HDs mutants. Moreover, bsFDA has been applied for spiked HDs analysis in different real matrixes, including human serum and cell lysate. The satisfactory recovery rates and reproducibility of the bsFDA reveal its potential detection efficacy for HDs analysis in biological samples. Overall, bsFDA holds great potential in developing functionalized aptasensors and realizing viral genome analysis in biological research.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Viral , Vírus da Hepatite B , Lactuca , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , DNA Viral/análise , Humanos , Lactuca/virologia , Lactuca/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Hepatite B/diagnóstico , Hepatite B/sangue , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Despite the implementation of various postoperative management strategies, the prevalence of postoperative fatigue syndrome (POFS) remains considerable among individuals undergoing laparoscopic radical gastrectomy. While the N-methyl-D-aspartic acid receptor antagonist esketamine has demonstrated efficacy in enhancing sleep quality and alleviating postoperative pain, its impact on POFS remains uncertain. Consequently, the objective of this study is to ascertain whether perioperative administration of esketamine can effectively mitigate the occurrence of POFS in patients undergoing laparoscopic radical gastrectomy. METHODS: A total of 133 patients diagnosed with gastric cancer were randomly assigned to two groups, namely the control group (Group C) (n = 66) and the esketamine group (Group E) (n = 67), using a double-blind method. The Group C received standardized anesthesia, while the Group E received esketamine in addition to the standardized anesthesia. The primary outcome measure assessed was the Christensen fatigue score at 3 days after the surgical procedure, while the secondary outcomes included the disparities in postoperative fatigue, postoperative pain, sleep quality, and adverse reactions between the two groups. RESULTS: In the group receiving esketamine, the fatigue scores of Christensen on the third day after surgery were significantly lower compared to the Group C (estimated difference, -0.70; 95% CI, -1.37 to -0.03; P = 0.040). Additionally, there was a significant decrease in the occurrence of fatigue in the Group E compared to the Group C on the first and third days following surgery (P < 0.05). Also, compared to individuals who had distal gastrectomy, those who had entire gastrectomy demonstrated a higher degree of postoperative tiredness reduction with esketamine. Furthermore, the Group E exhibited reduced postoperative pain and improved sleep in comparison to the Group C. Both groups experienced similar rates of adverse events. CONCLUSIONS: The use of esketamine during the perioperative period can improve POFS after laparoscopic radical gastrectomy, without adverse reactions. TRIAL REGISTRATION: Registered in the Chinese Clinical Trial Registry (ChiCTR2300072167) on 05/06 /2023.
Assuntos
Gastrectomia , Ketamina , Laparoscopia , Dor Pós-Operatória , Complicações Pós-Operatórias , Neoplasias Gástricas , Humanos , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Neoplasias Gástricas/cirurgia , Masculino , Feminino , Método Duplo-Cego , Laparoscopia/métodos , Pessoa de Meia-Idade , Gastrectomia/métodos , Complicações Pós-Operatórias/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Fadiga/prevenção & controle , IdosoRESUMO
OBJECTIVE: This study aims to investigate the prevalence of familial cerebral cavernous malformations (FCCMs) in first-degree relatives (FDRs) using familial screening, to describe the distribution of initial symptoms, lesion count on cranial MRI and pathogenic gene in patients. METHODS: Patients with multiple CCMs who enrolled from the Treatments and Outcomes of Untreated Cerebral Cavernous Malformations in China database were considered as probands and FDRs were recruited. Cranial MRI was performed to screen the CCMs lesions, and whole-exome sequencing was performed to identify CCM mutations. MRI and genetic screening were combined to diagnose FCCM in FDRs, and the results were presented as prevalence and 95% CIs. The Kaplan-Meier (KM) method was used to calculate the cumulative incidence of FCCM. RESULTS: 33 (76.74%) of the 43 families (110 FDRs) were identified as FCCM (85 FDRs). Receiver operating characteristic analysis revealed three lesions on T2-weighted imaging (T2WI) were the strong indicator for distinguishing probands with FCCM (sensitivity, 87.10%; specificity, 87.50%). Of the 85 FDRs, 31 were diagnosed with FCCM, resulting in a prevalence of 36.5% (26.2%-46.7%). In families with FCCMs, the mutation rates for CCM1, CCM2 and CCM3 were 45.45%, 21.21% and 9.09%, respectively. Furthermore, 53.13% of patients were asymptomatic, 17.19% were intracranial haemorrhage and 9.38% were epilepsy. The mean age of symptom onset analysed by KM was 46.67 (40.56-52.78) years. CONCLUSION: Based on MRI and genetic analysis, the prevalence of CCMs in the FDRs of families with FCCMs in China was 36.5%. Genetic counselling and MRI screening are recommended for FDRs in patients with more than three CCM lesions on T2WI.
RESUMO
SIGNIFICANCE: This study found that the unique properties of tear film breakup process in eyes with pterygium, combined with ocular surface parameters, further revealed specific dynamic mechanism. It suggested that the thickness of pterygium was especially valuable in deciding the necessity of surgical management. PURPOSE: This study aimed to explore the dynamic mechanism of tear film instability in eyes with pterygium. METHODS: A paired-eye controlled cross-sectional study was conducted. Seventy-eight patients with nasal pterygium were enrolled. Fluorescein tear film breakup was observed. Several key parameters related to tear film quality were defined and analyzed, including total breakup area (mathematically derived from pixel size using MATLAB), breakup velocity, fluorescein breakup time, breakup location and pattern, tear meniscus height, score of fluorescein corneal staining, and meiboscore. RESULTS: With comparable tear meniscus height, score of fluorescein corneal staining, and meiboscore between paired eyes (p > 0.05), eyes with pterygium had shorter breakup time, larger breakup area, and faster breakup velocity (p < 0.05). In eyes with pterygium, a positive correlation between meiboscore and pterygium parameters including length, thickness, and size was observed (p > 0.001). As the thickness increased, difference of breakup time and area between paired eyes increased (p = 0.02 and 0.046). Eyes with pterygium had more fixed inferonasal breakup location and often presented as dimple break (60%), whereas random break was the most common in contralateral normal eyes (62%). A unique breakup pattern named pterygium-induced local dimple break was found. It displayed as an irregular but vertical line-like shape appearing after lipid layer spreading, which was adjacent to the lower margin of pterygium and presented with unique properties including inferonasal breakup location, local breakup area, shorten breakup time, and faster breakup velocity. CONCLUSIONS: Eyes with pterygium showed a unique tear film breakup process and novel breakup pattern named pterygium-induced local dimple break . Dynamic mechanism played a significant role in tear film instability of eyes with pterygium rather than aqueous deficiency and increased evaporation.
Assuntos
Túnica Conjuntiva/anormalidades , Síndromes do Olho Seco , Pterígio , Humanos , Pterígio/cirurgia , Estudos Transversais , Lágrimas , FluoresceínaRESUMO
Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.
Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Ratos Sprague-Dawley , Encéfalo/patologia , Lesões Encefálicas/patologia , Hipóxia/patologia , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Animais Recém-NascidosRESUMO
Root metabolites and soil microbial community structure in the rhizosphere play critical roles in crop growth. Here, we assessed the efficiency of conventional and tissue culture propagation methods in modulating the soil health and microbiota in the rhizosphere of sugarcane (Saccharum officinarum L.) plants. The seeding canes were obtained using newly planted and two-year ratooned canes propagated by conventional (CSN and CSR) or tissue culture (TCN and TCR) methods. Changes in soil fertility, root metabolites and soil microbial community structure in the rhizosphere of sugarcane plants obtained using these canes were assessed. The activities of soil ß-glucosidase and aminopeptidase, soil microbial biomass nitrogen, and abundances of soil beneficial microbes, both at phyla and genera levels, were significantly higher in the rhizosphere of sugarcane plants in TCN and TCR treatments than those in that of plants in CSN and CSR treatments. Furthermore, flavonoid and flavonol biosynthesis and alanine, aspartate and glutamate metabolism were significantly upregulated in the roots of TCR and TCN plants compared with those in the roots of CSN and CSR plants. These results suggest that the tissue culture propagation method is a sustainable method for sugarcane cultivation to improve soil fertility and health in sugarcane rhizosphere.
Assuntos
Microbiota , Saccharum , Solo/química , Rizosfera , Microbiologia do Solo , Bactérias/metabolismo , Raízes de Plantas , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
BACKGROUND: Cardiac complications are related to poor prognosis after spontaneous intracerebral hemorrhage (ICH). This study aims to predict the cardiac complications arising from small intracranial hematoma at ultraearly stage. METHODS: The data of this work were derived from the Risk Stratification and Minimally Invasive Surgery in Acute ICH Patients study (ClinicalTrials.gov Identifier: NCT03862729). This work included patients with ICH but without brain herniation, as confirmed by a brain computed tomography scan within 48 hours of symptom onset. Every Patient's information recorded at the emergent department, including clinical, laboratory, electrocardiogram, and medical records, was derived from the electronic data capture. Cardiac complications were defined as the occurrence of myocardial damage, arrhythmias, and ischemic electrocardiogram changes during hospitalization. Variables associated with cardiac complications were filtrated by univariate and multivariate regression analyses. Independent risk factors were used to form the early predictive model. The restricted cubic splines were employed to investigate the nonlinear associations in a more sophisticated and scholarly manner. RESULTS: A total of 587 ICH patients were enrolled in this work, including 72 patients who suffered from cardiac complications after ICH. Out of the 78 variables, 24 were found to be statistically significant in the univariate logistic regression analysis. These significant variables were then subjected to multivariate logistic regression analysis and utilized for constructing risk models. Multivariate logistic regression analysis showed high plasma fibrinogen (FIB) level [odds ratio (OR) per standard deviation (SD) 1.327, 95% confidence intervals (CI) 1.037-1.697; P = 0. 024)] and older age (OR per SD 1.777, 95% CI 1.344-2.349; P ï¼0.001) were associated with a higher incidence of cardiac complications after ICH. High admission pulse rate (OR 0.620, 95% CI 0.451-0.853; P = 0. 003) was considered a protective factor for cardiac complications after ICH. In the restricted cubic spline regression model, FIB and cardiac complications following ICH were positively correlated and almost linearly (P for nonlinearity = 0.073). The reference point for FIB in predicting cardiac complications after ICH was 2.64 g/L. CONCLUSIONS: Emergent factors, including plasma FIB level, age, and pulse rate, might be independently associated with cardiac complications after ICH, which warrants attention in the context of treatment.
Assuntos
Hemorragia Cerebral , Cardiopatias , Humanos , Hemorragia Cerebral/complicações , Fatores de Risco , Hematoma/etiologia , Hematoma/complicações , Incidência , Cardiopatias/etiologia , Cardiopatias/complicações , FibrinogênioRESUMO
To elucidate the mechanisms underlying the resistance to smut of different sugarcane cultivars, endophytic bacterial and fungal compositions, functions and metabolites in the stems of the sugarcane cultivars were analyzed using high-throughput sequencing techniques and nontargeted metabolomics. The results showed that the levels of ethylene, salicylic acid and jasmonic acid in sugarcane varieties that were not sensitive to smut were all higher than those in sensitive sugarcane varieties. Moreover, endophytic fungi, such as Ramichloridium, Alternaria, Sarocladium, Epicoccum, and Exophiala species, could be considered antagonistic to sugarcane smut. Additionally, the highly active arginine and proline metabolism, pentose phosphate pathway, phenylpropanoid biosynthesis, and tyrosine metabolism in sugarcane varieties that were not sensitive to smut indicated that these pathways contribute to resistance to smut. All of the above results suggested that the relatively highly abundant antagonistic microbes and highly active metabolic functions of endophytes in non-smut-sensitive sugarcane cultivars were important for their relatively high resistance to smut.
Assuntos
Saccharum , Saccharum/genética , Metabolismo Secundário , Metabolômica , Alternaria , Arginina , Grão ComestívelRESUMO
In practical production, cane stems with buds are generally used as seed for propagation. However, long-terms cane stems only easily lead to some problems such as disease sensitivity, quality loss, etc. Recently, cane seedings, which are produced by tissue culture were used in sugarcane production, but few studies on cane health related to tissue culture seedings. Therefore, to evaluate the immunity and health of sugarcanes growing from different reproduction modes, the endophytic microbial compositions in cane roots between stem and tissue culture seedlings were analyzed using high-throughput techniques. The results showed that the endophytic microbial compositions in cane roots were significant differences between stem and tissue culture seedlings. At the genus level, Pantoea, Bacillus, Streptomyces, Lechevalieria, Pseudomonas, Nocardioides, unclassified_f__Comamonadaceae enriched as the dominant endophytic bacterial genera, and Rhizoctonia, Sarocladium, Scytalidium, Wongia, Fusarium, unclassified_f__Phaeosphaer, unclassified_c__Sordariom, unclassified_f__Stachybot, Poaceascoma, Microdochium, Arnium, Echria, Mycena and Exophiala enriched as the dominant endophytic fungal genera in cane roots growing from the tissue culture seedlings. In contrast, Mycobacterium, Massilia, Ralstonia, unclassified_f__Pseudonocardiacea, norank_f__Micropepsaceae, Leptothrix and Bryobacter were the dominant endophytic bacterial genera, and unclassified_k__Fungi, unclassified_f__Marasmiaceae, Talaromyces, unclassified_c__Sordariomycetes and Trichocladium were the dominant endophytic fungal genera in cane roots growing from stem seedlings. Additionally, the numbers of bacterial and fungal operational taxonomic units (OTUs) in cane roots growing from tissue culture seedlings were significantly higher than those of stem seedlings. It indicates that not only the endophytic microbial compositions in cane roots can be shaped by different propagation methods, but also the stress resistance of sugarcanes can be improved by the tissue culture propagation method.
Assuntos
Actinomycetales , Agaricales , Ascomicetos , Fungos não Classificados , Fusarium , Sordariales , Streptomyces , Bengala , Raízes de Plantas/microbiologia , EndófitosRESUMO
Heavy metal pollution poses a great threat to the ecological environment and human health. In particular, copper ions (Cu2+) play a vital role in regulating fundamental life behavior, and the homeostasis of Cu2+ is closely related to many physiological processes. The excessive accumulation of Cu2+ in the human body through food and drinking water will cause severe diseases. However, current conventional Cu2+ detection methods for evaluating the content of Cu2+ are unable to meet the complete requirements of practical Cu2+ analysis in the practical aquatic environment. In this work, we successfully constructed a novel fluorescent DNA aptasensor, which originated from the binding reaction between the improved DNA fluorescent light-up aptamer termed S2T3AT-GC and a small fluorescent molecule termed DFHBI-1T (S2T3AT-GC/DFHBI-1T) to realize fast and anti-interference response for Cu2+via the competitive interaction between Cu2+ and S2T3AT-GC (Cu2+/S2T3AT-GC) destroying the contained G-quadruplex structure of S2T3AT-GC. Moreover, it enables the sensitive detection of Cu2+ with a detection limit of 0.3 µM and a wide detection linear range from 0.3 to 300 µM. Moreover, with the verification of high stability in real industrial sewage samples, this aptasensor exhibits excellent detection performance for Cu2+ analysis in real water samples. Therefore, the proposed aptasensor exhibits great potential in exploring Cu2+-related environmental and ecological research.
Assuntos
Cobre , Esgotos , Humanos , Cobre/análise , Cobre/química , DNA , Íons , Corantes Fluorescentes/químicaRESUMO
Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.
RESUMO
Dopamine (DA) plays an essential role in dopaminergic neuronal behavior and disease. However, current detection methods for discriminating the secretion of DA are hampered by the limitations of the requirement for bulky instrumentation and non-intuitive signals. Herein, we have controllably and proportionately integrated molybdenum disulfide (MoS2) with titanium dioxide (TiO2) to prepare MoS2@TiO2 nanocomposites (MoS2@TiO2 NCs) via a facile synthesis method. MoS2@TiO2 NCs with a certain reactant mass ratio have shown a significant enhancement in peroxidase-like activity with superiority of the nanocomposite structure compared to single MoS2 or natural enzyme. The method for catalyzing the decomposition of H2O2 by MoS2@TiO2 NCs and competition for hydroxyl radicals (ËOH) between the chromogenic agent and DA enable a sensitive, specific, and colorimetric DA analysis with a low detection limit of 0.194 µM and a wide linear detection range (0.8 to 100 µM). Because of the favorable detection performance, we were encouraged to explore and finally realize the visual detection of cellular DA secretion that is stimulated in a High-K+ neurocyte environment. Collectively, this method will provide a promising strategy for basic research in neuroscience with its portable, sensitive, and naked-eye detectable performance.
Assuntos
Dopamina , Nanocompostos , Molibdênio/química , Peróxido de Hidrogênio/química , Nanocompostos/químicaRESUMO
This study investigated the effect of the interaction between ultrafine slag powder (USL) and limestone (LS) on the rheology behavior, microstructure, and fractal features of UHPC. The results indicated that B2 with mass ratio of 2:1 between the USL and LS obtained the highest compressive strength and the lowest yield stress. The combination of the USL and LS facilitated the cement hydration, ettringite, and monocarboaluminate (Mc) formation, as well as the increase in the polymerization of the C-S-H. The synergistic action between the USL and LS refined the pore structure due to the formation of the Mc, compensating for the consumption of the CH by the pozzolanic reaction, which provided a denser microstructure in the UHPC. The fractal dimension (Ds) of the UHPC was strongly related to the concrete pore structures and the compressive strength, which demonstrated that a new metric called the Ds value may be used to assess the synergistic effect of the UHPC.
RESUMO
Iron oxides have been widely studied as anode materials for lithium-ion batteries (LIBs) due to their high conductivity (5 × 104 S m-1) and high capacity (ca. 926 mAh g-1). However, having a large volume change and being highly prone to dissolution/aggregation during charge/discharge cycles hinder their practical application. Herein, we report a design strategy for constructing yolk-shell porous Fe3O4@C anchored on graphene nanosheets (Y-S-P-Fe3O4/GNs@C). This particular structure can not only introduce sufficient internal void space to accommodate the volume change of Fe3O4 but also afford a carbon shell to restrict Fe3O4 overexpansion, thus greatly improving capacity retention. In addition, the pores in Fe3O4 can effectively promote ion transport, and the carbon shell anchored on graphene nanosheets is capable of enhancing overall conductivity. Consequently, Y-S-P-Fe3O4/GNs@C features a high reversible capacity of 1143 mAh g-1, an excellent rate capacity (358 mAh g-1 at 10.0 A g-1), and a prolonged cycle life with robust cycling stability (579 mAh g-1 remaining after 1800 cycles at 2.0 A g-1) when assembled into LIBs. The assembled Y-S-P-Fe3O4/GNs@C//LiFePO4 full-cell delivers a high energy density of 341.0 Wh kg-1 at 37.9 W kg-1. The Y-S-P-Fe3O4/GNs@C is proved to be an efficient Fe3O4-based anode material for LIBs.
RESUMO
This study focused on CO2 emissions embodied in trade (CEET) to better promote carbon emission reduction given that foreign trade occupied an increasing proportion of the global economy. Based on technical adjustment, CEET balance worldwide during 2006-2016 was calculated and compared to avoid false transfer. This study also explored the influencing factors of CEET balance and identified the transfer pathway of China. Results indicate that developing countries are the major exporters of CEET, and developed countries are CEET importers in general. China is the largest net exporter of CEET and bears a large amount of it for developed countries. Trade balance and trade specialization are important factors of the imbalance of CEET in China. The transfer of CEET between China and the USA, Japan, India, Germany, South Korea, and other countries is relatively active. Agriculture, mining, manufacturing, electricity, heat, gas, water production and supply, and transportation, storage, and postal services are the major sectors, where the transfer occurs in China. Reducing CO2 emissions requires global cooperation in the context of globalization. Strategies are proposed to deal with imbalances and transfer of CEET issues in China.
Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Carbono/análise , Comércio , China , InternacionalidadeRESUMO
Two different qualities of pumpkin, cultivars G1519 and G1511, were grown in the same environment under identical management. However, their qualities, such as the contents of total soluble solids, starch, protein, and vitamin C, were significantly different. Do rhizospheric microbes contribute to pumpkin quality? To answer this question, this study investigated the soil microbial compositions in the rhizospheres of different quality pumpkin cultivars to determine the differences in these soil microbial compositions and thus determine how soil microbes may affect pumpkin quality. Firstly, a randomized complete block design with two pumpkin cultivars and three replications was performed in this study. The soil microbial compositions and structures in the rhizospheres of the two pumpkin cultivars were analyzed using a high-throughput sequencing technique. In comparison with the low-quality pumpkin cultivar (G1519), higher microbial diversity and richness could be found in the rhizospheres of the high-quality pumpkin cultivar (G1511). The results showed that there were significant differences in the soil bacterial and fungal community compositions in the rhizospheres of the high- and low-quality pumpkin cultivars. Although the compositions and proportions of microorganisms were similar in the rhizospheres of the two pumpkin cultivars, the proportions of Basidiomycota and Micropsalliota in the G1519 rhizosphere were much higher than those in the G1511 rhizosphere. Furthermore, the fungal phylum and genus Rozellomycota and Unclassified_p__Rozellomycota were unique in the rhizosphere of the high-quality pumpkin cultivar (G1511). All the above results indicate that soil microbes were enriched differentially in the rhizospheres of the low- and high-quality pumpkin cultivars. In other words, more abundant soil microbes were recruited in the rhizosphere of the high-quality pumpkin cultivar as compared to that of the low-quality cultivar. Rozellomycota and Unclassified_p__Rozellomycota may be functional microorganisms relating to pumpkin quality.