Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 437(1): 113999, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494067

RESUMO

The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.


Assuntos
Diabetes Mellitus , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ligamento Periodontal/metabolismo , Transdução de Sinais , Inflamação , Produtos Finais de Glicação Avançada/farmacologia
2.
Front Cell Infect Microbiol ; 13: 1332786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106469

RESUMO

[This corrects the article DOI: 10.3389/fcimb.2023.1145824.].

3.
PLoS One ; 18(6): e0286903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310976

RESUMO

The angiotensin receptor neprilysin inhibitor LCZ696 affords superior cardioprotection and renoprotection compared with renin-angiotensin blockade monotherapy, but the underlying mechanisms remain elusive. Herein, we evaluated whether LCZ696 attenuates renal fibrosis by inhibiting ASK1/JNK/p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Rats with UUO were treated daily for 7 days with LCZ696, valsartan, or the selective ATP competitive inhibitor of apoptosis signal-regulating kinase 1 (ASK1), GS-444217. The effects of LCZ696 on renal injury were examined by assessing the histopathology, oxidative stress, intracellular organelles, apoptotic cell death, and MAPK pathways. H2O2-exposed human kidney 2 (HK-2) cells were also examined. LCZ696 and valsartan treatment significantly attenuated renal fibrosis caused by UUO, and this was paralleled by downregulation of proinflammatory cytokines and decreased inflammatory cell influx. Intriguingly, LCZ696 had stronger effects on renal fibrosis and inflammation than valsartan. UUO-induced oxidative stress triggered mitochondrial destruction and endoplasmic reticulum stress, which resulted in apoptotic cell death; these effects were reversed by LCZ696. Both GS-444217 and LCZ696 hampered the expression of death-associated ASK1/JNK/p38 MAPKs. In H2O2-treated HK-2 cells, LCZ696 and GS-444217 increased cell viability but decreased the production of intracellular reactive oxygen species and MitoSOX and apoptotic cell death. Both agents also deactivated H2O2-stimulated activation of ASK1/JNK/p38 MAPKs. These findings suggest that LCZ696 protects against UUO-induced renal fibrosis by inhibiting ASK1/JNK/p38 MAPK-mediated apoptosis.


Assuntos
Nefropatias , Proteína Quinase 14 Ativada por Mitógeno , Obstrução Ureteral , Humanos , Animais , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno , Neprilisina , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Receptores de Angiotensina , Peróxido de Hidrogênio , MAP Quinase Quinase Quinase 5 , Valsartana/farmacologia , Anti-Hipertensivos , Antivirais , Apoptose
4.
Front Cell Infect Microbiol ; 13: 1145824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077525

RESUMO

Background: Toxoplasmosis caused by Toxoplasma gondii is a globally distributed zoonosis. Most infections appear asymptomatic in immunocompetent individuals, but toxoplasmosis can be fatal in fetuses and immunocompromised adults. There is an urgent need to research and develop effective and low-toxicity anti-T. gondii drugs because of some defects in current clinical anti-T. gondii drugs, such as limited efficacy, serious side effects and drug resistance. Methods: In this study, 152 autophagy related compounds were evaluated as anti-T. gondii drugs. The activity of ß-galactosidase assay based on luminescence was used to determine the inhibitory effect on parasite growth. At the same time, MTS assay was used to further detect the effects of compounds with over 60% inhibition rate on host cell viability. The invasion, intracellular proliferation, egress and gliding abilities of T. gondii were tested to assess the inhibitory effect of the chosen drugs on the distinct steps of the T. gondii lysis cycle. Results: The results showed that a total of 38 compounds inhibited parasite growth by more than 60%. After excluding the compounds affecting host cell activity, CGI-1746 and JH-II-127 were considered for drug reuse and further characterized. Both CGI-1746 and JH-II-127 inhibited tachyzoite growth by 60%, with IC50 values of 14.58 ± 1.52 and 5.88 ± 0.23 µM, respectively. TD50 values were 154.20 ± 20.15 and 76.39 ± 14.32 µM, respectively. Further research found that these two compounds significantly inhibited the intracellular proliferation of tachyzoites. Summarize the results, we demonstrated that CGI-1746 inhibited the invasion, egress and especially the gliding abilities of parasites, which is essential for the successful invasion of host cells, while JH-II-127 did not affect the invasion and gliding ability, but seriously damaged the morphology of mitochondria which may be related to the damage of mitochondrial electron transport chain. Discussion: Taken together, these findings suggest that both CGI-1746 and JH-II-127 could be potentially repurposed as anti-T. gondii drugs, lays the groundwork for future therapeutic strategies.


Assuntos
Toxoplasma , Toxoplasmose , Adulto , Animais , Humanos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Zoonoses , Proliferação de Células
5.
PLoS One ; 17(10): e0274116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223414

RESUMO

Renal fibrosis represents the final common outcome of chronic kidney disease of virtually any etiology. However, the mechanism underlying the evolution of renal fibrosis remains to be addressed. This study sought to clarify whether RIP1-RIP3-mediated necroptosis is involved in renal fibrosis via Wnt3α/ß-catenin/GSK-3ß signaling in vitro and in a rat model of unilateral ureteral obstruction (UUO). Rats with UUO were administered RIP inhibitors (necrostatin-1 or GSK872) or ß-catenin/TCF inhibitor ICG-001 daily for 7 consecutive days. UUO caused significant renal tubular necrosis and overexpression of RIP1-RIP3-MLKL axis proteins, and was accompanied by activation of the NLRP3 inflammasome and renal fibrosis. Oxidative stress caused by UUO was closely associated with endoplasmic reticulum stress and mitochondrial dysfunction, which resulted in apoptotic cell death via Wnt3α/ß-catenin/GSK-3ß signaling. All of these effects were abolished by an RIP inhibitor (necrostatin-1 or GSK872) or ICG-001. In H2O2-treated HK-2 cells, both RIP inhibitor and ICG-001 decreased intracellular reactive oxygen species production and apoptotic cells, but increased cell viability. Activated Wnt3α/ß-catenin/GSK-3ß signaling was decreased by either RIP inhibitor or ICG-001. Our findings suggest that RIP1-RIP3-mediated necroptosis contributes to the development of renal fibrosis via Wnt3α/ß-catenin/GSK-3ß signaling in UUO and may be a therapeutic target for protection against renal scarring of other origins.


Assuntos
Nefropatias , Proteína Serina-Treonina Quinases de Interação com Receptores , Obstrução Ureteral , Animais , Fibrose , Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio , Inflamassomos , Nefropatias/complicações , Proteína 3 que Contém Domínio de Pirina da Família NLR , Necroptose , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Obstrução Ureteral/complicações , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA