RESUMO
Recent breakthroughs in cell transplantation therapy have revealed the promising potential of bone marrow mesenchymal stem cells (BMSCs) for promoting the regeneration of growth plate cartilage injury. However, the high apoptosis rate and the uncertainty of the differentiation direction of cells often lead to poor therapeutic effects. Cells are often grown under three-dimensional (3D) conditions in vivo, and the stiffness and components of the extracellular matrix (ECM) are important regulators of stem cell differentiation. To this end, a 3D cartilage-like ECM hydrogel with tunable mechanical properties was designed and synthesized mainly from gelatin methacrylate (GM) and oxidized chondroitin sulfate (OCS) via dynamic Schiff base bonding under UV. The effects of scaffold stiffness and composition on the survival and differentiation of BMSCs in vitro were investigated. A rat model of growth plate injury was developed to validate the effect of the GMOCS hydrogels encapsulated with BMSCs on the repair of growth plate injury. The results showed that 3D GMOCS hydrogels with an appropriate modulus significantly promoted chondrogenic differentiation of BMSCs, and GMOCS/BMSC transplantation could effectively inhibit bone bridge formation and promote the repair of damaged growth plates. Accordingly, GMOCS/BMSC therapy can be engineered as a promising therapeutic candidate for growth plate injury.
RESUMO
Photothermal hydrogel adhesives have yielded promising results for wound closure and infected wound treatment in recent years. However, photothermal hydrogel bioadhesives with on-demand removability without additional nanomaterials-based photothermal agents have rarely been reported in the literature. In this work, an injectable intrinsic photothermal hydrogel bioadhesive with an on-demand removal trait is developed through dynamic cross-linking of gelatin (Gel), tannic acid (TA) quinone, and borax for closing skin incisions and accelerating methicillin-resistant Staphylococcus aureus (MRSA) infected wound healing. The TA quinone containing polyphenol and quinone groups with multifunctional adhesiveness and intrinsic photothermal performance confer the hydrogel adhesive with near-infrared (NIR) responsive antibacterial activity. The cross-linking of pH-sensitive boronic ester (polyphenol-B) and Schiff base bonds endow the hydrogel with great self-healing capacity and on-demand removability. Moreover, the hydrogel possesses good biocompatibility, injectability, and hemostasis. The in vivo experiment in a rat cutaneous incision model and full-thickness MRSA-infected wound model indicate that the smart hydrogel can close wounds efficiently and treat infected ones, demonstrating its superiority in noninvasive treatment of cutaneous incisions and enhancing infected full-thickness wound healing.