Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Pak J Pharm Sci ; 37(5): 1011-1018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39460967

RESUMO

To investigate liver function changes, blood glucose fluctuation, insulin secretion and gender differences in hyperthyroidism patients before and after propranolol with methimazole. Clinical data 110 hyperthyroidism patients admitted to Zhangzhou Affiliated Hospital of Fujian Medical University from February 2023 to February 2024 were retrospectively analyzed. They were categorized into the methimazole group (methimazole, n = 55) and the coalition medication group (Methimazole with propranolol, n = 55). The therapeutic effects of both groups were observed. Pre- and post-treatment liver function dynamic blood glucose parameters and insulin secretion characteristics were analyzed between the two groups. Gender differences prior to treatment were also examined. Overall efficacy was significantly higher in the oalition group (96.35%) than in the methimazole group (83.64%) (P<0.05); Post-treatment, the TBiL, AST, ALT, FT3, FT4, FBG, P1BG, HOMA-IR, HOMA-ß, postprandial blood glucose peak value, LAGE, MAGE, MODD and SDBG levels in the coalition group were lower compared to the methimazole group, while TSH was higher (P<0.05). Female patients exhibited significantly lower LAGE, MAGE, MODD and SDBG levels compared to the male group (P<0.05). The combination of methimazole and propranolol enhances thyroid and liver functions for hyperthyroid patients while improving insulin resistance along with reducing postprandial blood glucose variability.


Assuntos
Antitireóideos , Glicemia , Hipertireoidismo , Fígado , Metimazol , Propranolol , Humanos , Feminino , Propranolol/uso terapêutico , Metimazol/uso terapêutico , Masculino , Hipertireoidismo/tratamento farmacológico , Hipertireoidismo/sangue , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antitireóideos/uso terapêutico , Fatores Sexuais , Comprimidos , Secreção de Insulina/efeitos dos fármacos , Insulina/sangue , Quimioterapia Combinada , Testes de Função Hepática , Resultado do Tratamento
2.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1681-1688, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235027

RESUMO

Rhizosphere is a vital area for substance exchange and energy transfer between roots and soil microorganisms. Therefore, diazotrophs in the rhizosphere play a pivotal role in facilitating plant nitrogen acquisition. We investigated the variability in the abundance and community structure of soil diazotrophs and the influencing factors across rhizosphere soils of Cunninghamia lanceolata in three locations: Baisha State-owned Forest Farm in Longyan City (BS), Sanming Forest Ecosystem and Global Change Research Station (SM), and Wuyishan National Forest Park in Nanping City (WYS), located in the western region of Fujian Province, quantified the diazotrophic abundance by using real-time quantitative PCR, and assessed the community structure by high-throughput sequencing. The results showed that soil pH, C:N ratio, and C:(N:P) stoichiometry in SM were notably lower compared to those in BS and WYS. In SM, the abundance of the nifH gene was 6.38×108 copies·g-1, significantly lower than 1.35×109 copies·g-1 in BS and 1.10×109 copies·g-1 in WYS. Additionally, α diversity index of diazotrophs was lower in SM compared to BS and WYS, while the community structure of diazotrophs in rhizosphere soils of BS and WYS was similar, which differed significantly from that in SM. The diazotrophic sequences in the three forest farms could be divided into 5 phylum, 8 classes, 15 orders, 23 families and 33 genera, with Proteobacteria, α-proteobacteria, and Bradyrhizobium as the dominant phylotypes. Soil pH, available phosphorus, NO3--N and C:(N:P) ratio were identified as significant factors influencing both the abundance and community structure of nifH genes, with soil pH performing the greatest. Taken together, there were spatial variations in the distribution of diazotrophic abundance and community structure in C. lanceolata rhizosphere soils, with soil pH as the primary driving factor.


Assuntos
Cunninghamia , Rizosfera , Microbiologia do Solo , Cunninghamia/crescimento & desenvolvimento , China , Solo/química , Nitrogênio/análise , Nitrogênio/metabolismo , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/genética , Clima Tropical
3.
Talanta ; 275: 126112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677169

RESUMO

The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.


Assuntos
Acetilcolina , Acetilcolinesterase , Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Acetilcolina/análise , Acetilcolina/metabolismo , Acetilcolina/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Platina/química , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Zircônio/química , Materiais Biomiméticos/química , Peroxidase/química , Peroxidase/metabolismo , Colorimetria/métodos , Catálise , Limite de Detecção
4.
Sci Total Environ ; 921: 171227, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402820

RESUMO

Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.


Assuntos
Amônia , Solo , Solo/química , Oxirredução , Bactérias , Nitrificação , Filogenia , Archaea
5.
Water Res ; 249: 120943, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064785

RESUMO

Aquaculture ponds are potential hotspots for carbon cycling and emission of greenhouse gases (GHGs) like CO2 and CH4, but they are often poorly assessed in the global GHG budget. This study determined the temporal variations of CO2 and CH4 concentrations and diffusive fluxes and their environmental drivers in coastal aquaculture ponds in southeastern China over a five-year period (2017-2021). The findings indicated that CH4 flux from aquaculture ponds fluctuated markedly year-to-year, and CO2 flux varied between positive and negative between years. The coefficient of inter-annual variation of CO2 and CH4 diffusive fluxes was 168% and 127%, respectively, highlighting the importance of long-term observations to improve GHG assessment from aquaculture ponds. In addition to chlorophyll-a and dissolved oxygen as the common environmental drivers, CO2 was further regulated by total dissolved phosphorus and CH4 by dissolved organic carbon. Feed conversion ratio correlated positively with both CO2 and CH4 concentrations and fluxes, showing that unconsumed feeds fueled microbial GHG production. A linear regression based on binned (averaged) monthly CO2 diffusive flux data, calculated from CO2 concentrations, can be used to estimate CH4 diffusive flux with a fair degree of confidence (r2 = 0.66; p < 0.001). This algorithm provides a simple and practical way to assess the total carbon diffusive flux from aquaculture ponds. Overall, this study provides new insights into mitigating the carbon footprint of aquaculture production and assessing the impact of aquaculture ponds on the regional and global scales.


Assuntos
Dióxido de Carbono , Lagoas , Carbono , Mudança Climática , Metano/análise , Monitoramento Ambiental , Aquicultura , China , Óxido Nitroso/análise
6.
Appl Environ Microbiol ; 89(9): e0080723, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671870

RESUMO

Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.


Assuntos
Bactérias , Áreas Alagadas , Oxirredução , Nitrificação , Amônia , China , Archaea , Filogenia
7.
Front Plant Sci ; 14: 1214006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564384

RESUMO

Timely and accurate prediction of crop yield is essential for increasing crop production, estimating planting insurance, and improving trade benefits. Potato (Solanum tuberosum L.) is a staple food in many parts of the world and improving its yield is necessary to ensure food security and promote related industries. We conducted a comprehensive literature survey to demonstrate methodological evolution of predicting potato yield. Publications on predicting potato yield based on methods of remote sensing (RS), crop growth model (CGM), and yield limiting factor (LF) were reviewed. RS, especially satellite-based RS, is crucial in potato yield prediction and decision support over large farm areas. In contrast, CGM are often utilized to optimize management measures and address climate change. Currently, combined with the advantages of low cost and easy operation, unmanned aerial vehicle (UAV) RS combined with artificial intelligence (AI) show superior potential for predicting potato yield in precision management of large-scale farms. However, studies on potato yield prediction are still limited in the number of varieties and field sample size. In the future, it is critical to employ time-series data from multiple sources for a wider range of varieties and large field sample sizes. This study aims to provide a comprehensive review of the progress in potato yield prediction studies and to provide a theoretical reference for related research on potato.

8.
Environ Res ; 227: 115829, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011802

RESUMO

Wetland sediment is an important nitrogen pool and a source of the greenhouse gas nitrous oxide (N2O). Modification of coastal wetland landscape due to plant invasion and aquaculture activities may drastically change this N pool and the related dynamics of N2O. This study measured the sediment properties, N2O production and relevant functional gene abundances in 21 coastal wetlands across five provinces along the tropical-subtropical gradient in China, which all had experienced the same sequence of habitat transformation from native mudflats (MFs) to invasive Spartina alterniflora marshes (SAs) and subsequently to aquaculture ponds (APs). Our results showed that change from MFs to SAs increased the availability of NH4+-N and NO3--N and the abundance of functional genes related to N2O production (amoA, nirK, nosZ Ⅰ, and nosZ Ⅱ), whereas conversion of SAs to APs resulted in the opposite changes. Invasion of MFs by S. alterniflora increased N2O production potential by 127.9%, whereas converting SAs to APs decreased it by 30.4%. Based on structural equation modelling, nitrogen substrate availability and abundance of ammonia oxidizers were the key factors driving the change in sediment N2O production potential in these wetlands. This study revealed the main effect patterns of habitat modification on sediment biogeochemistry and N2O production across a broad geographical and climate gradient. These findings will help large-scale mapping and assessing landscape change effects on sediment properties and greenhouse gas emissions along the coast.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Nitrogênio/análise , Óxido Nitroso , Amônia , Ecossistema , Áreas Alagadas , Solo/química
10.
Sci Total Environ ; 870: 162008, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739025

RESUMO

Nitrous oxide (N2O) reducers are the only known sink for N2O and pivotal contributors to N2O mitigation in terrestrial and water ecosystems. However, the niche preference of nosZ I and nosZ II carrying microorganisms, two divergent clades of N2O reducers in coastal wetlands, is not yet well documented. In this study, we investigated the abundance, community structure and co-occurrence network of nosZ I and nosZ II carrying microorganisms and their driving factors at three depths in a subtropical coastal wetland with five plant species and a bare tidal flat. The taxonomic identities differed between nosZ I and nosZ II carrying microorganisms, with nosZ I sequences affiliated with Alphaproteobacteria and Betaproteobacteria while nosZ II sequences with Gemmatimonadetes, Verrucomicrobia, Gammaproteobacteria, and Chloroflexi. The abundances of nosZ I and nosZ II decreased with increasing soil depths, and were positively associated with salinity, total carbon (TC) and total nitrogen (TN). Random forest analysis showed that salinity was the strongest predictor for the abundances of nosZ I and nosZ II. Salinity, TC and TN were the major driving forces for the community structure of nosZ I and nosZ II carrying microorganisms. Moreover, co-occurrence analysis showed that 92.2 % of the links between nosZ I and nosZ II were positive, indicating that nosZ I and nosZ II carrying microorganisms likely shared similar ecological niches. Taken together, we provided new evidence that nosZ I and nosZ II carrying microorganisms shared similar ecological niches in a subtropical estuarine wetland, and identified salinity, TC and TN serving as the most important environmental driving forces. This study advances our understanding of the environmental adaptation and niche preference of nosZ I and nosZ II carrying microorganisms in coastal wetlands.


Assuntos
Alphaproteobacteria , Betaproteobacteria , Áreas Alagadas , Ecossistema , Bactérias , Carbono , Óxido Nitroso/análise , Solo/química
11.
Ying Yong Sheng Tai Xue Bao ; 34(1): 25-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799373

RESUMO

Large proportion of natural forest has been transformed into plantations in subtropical regions, with consequences on forest ecosystem structure and function. In order to understand the responses of two nitrite reducing genes (nirK and nirS) in N2O production to forest conversion, we collected soil samples from Castanopsis carlesii natural forest, Cunninghamia lanceolata plantation and Pinus massoniana plantation and examined the abundance of nirK and nirS genes in soils and aggregates. Results showed that forest conversion increased soil pH, while decreased soil ammonium content. Forest conversion did not influence the mass proportion of soil aggregates. The abundance of nirK and nirS genes varied in aggregates with different particle sizes. The abundance of nirK and nirS genes was the highest in small macraoaggregates and the lowest in the silt-clay particles. Moreover, the abundance of nirK was significantly higher than that of nirS in soils of all forest types, indicating that nirK dominated in the acidic forest soils. Conversion of natural forest to plantations significantly increased the abundance of nirK and nirS genes in the bulk soil and aggregates, indicating that forest conversion would be beneficial for the growth of microorganisms bearing nirK and nirS genes, which might be associated with the increases of soil pH. Taken together, conversion of natural forest to C. lanceolata plantation or P. massoniana plantation significantly increased the abundance of nirK and nirS in soils and aggregates, but did not affect the mass proportions of aggregates.


Assuntos
Nitritos , Solo , Solo/química , Ecossistema , Florestas , Argila , Microbiologia do Solo
12.
Sci Rep ; 13(1): 652, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635356

RESUMO

microRNAs (miRNAs) are endogenous small RNAs that are key regulatory factors participating in various biological activities such as the signaling of phosphorus deficiency in the plant. Previous studies have shown that miR156 expression was modulated by phosphorus starvation in Arabidopsis and soybean. However, it is not clear whether the over-expression of soybean miR156b (GmmiR156b) can improve a plant's tolerance to phosphorus deficiency and affect yield component traits. In this study, we generated Arabidopsis transgenic lines overexpressing GmmiR156b and investigated the plant's response to phosphorus deficiency. Compared with the wild type, the transgenic Arabidopsis seedlings had longer primary roots and higher phosphorus contents in roots under phosphorus-deficit conditions, but lower fresh weight root/shoot ratios under either phosphorus-deficient or sufficient conditions. Moreover, the GmmiR156b overexpression transgenic lines had higher phosphorus content in shoots of adult plants and grew better than the wide type under phosphorus-deficient conditions, and exhibited increased seed yields as well as strong pleiotropic developmental morphology such as dwarfness, prolonged growth period, bushy shoot/branching, and shorter silique length, suggesting that the transgenic lines were more tolerant to phosphorus deficiency. In addition, the expression level of four SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes (i.e., AtSPL4/5/6/15) were markedly suppressed in transgenic plants, indicating that they were the main targets negatively regulated by GmmiR156b (especially AtSPL15) and that the enhanced tolerance to phosphorus deficiency and seed yield is conferred mainly by the miR156-mediated downregulation of AtSPL15.


Assuntos
Arabidopsis , Glycine max , MicroRNAs , Fósforo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/deficiência , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , Glycine max/genética , MicroRNAs/genética , RNA de Plantas/genética
13.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36372840

RESUMO

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Assuntos
Micobioma , Áreas Alagadas , Espécies Introduzidas , Plantas , Poaceae/fisiologia , Solo/química , Fungos/genética , Microbiologia do Solo , China
14.
Microb Ecol ; 85(1): 209-220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034141

RESUMO

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.


Assuntos
Nitrificação , Áreas Alagadas , Oxirredução , Bactérias , Amônia , Solo/química , Poaceae
15.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2705-2710, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384605

RESUMO

The reactive nitrogen deposition in subtropical region of China has been increasing annually, which affects biogeochemical processes in forest soils. In this study, three treatments were established, including control (no N addition, CK), low nitrogen deposition (40 kg·hm-2·a-1, LN), and high nitrogen deposition (80 kg·hm-2·a-1, HN) to study the response of denitrifying functional genes and potential N2O emissions to simulated nitrogen deposition in the soils of a natural Castanopsis carlesii forest. Results showed that HN significantly decreased soil potential N2O emission, while 8-year nitrogen deposition did not affect the abundances of nirS, nirK, nosZ Ⅰ and nosZ Ⅱ. However, the abundance of nosZ Ⅰwas significantly higher than nosZ Ⅱ in all the treatments, indicating that nosZ Ⅰ dominated over nosZ Ⅱ in the acidic soils. HN significantly decreased the ratio of (nirK+nirS)/(nosZ Ⅰ+nosZ Ⅱ), which was positively correlated with soil pH. The results suggested that long-term high nitrogen deposition reduced soil pH and the abundance ratio of (nirK+nirS)/(nosZ Ⅰ+nosZ Ⅱ), which subsequently reduced the potential N2O emission.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/análise , Nitrogênio , Microbiologia do Solo , Desnitrificação , Florestas
16.
Water Res ; 227: 119326, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368085

RESUMO

Land reclamation is a major threat to the world's coastal wetlands, and it may influence the biogeochemical cycling of nitrogen in coastal regions. Conversion of coastal marshes into aquaculture ponds is common in the Asian Pacific region, but its impacts on the production and emission of nitrogen greenhouse gases remain poorly understood. In this study, we compared N2O emission from a brackish marsh and converted shrimp aquaculture ponds in the Shanyutan wetland, the Min River Estuary in Southeast China over a three-year period. We also measured sediment and porewater properties, relevant functional gene abundance, sediment N2O production potential and denitrification potential in the two habitats. Results indicated that the pond sediment had lower N-substrate availability, lower ammonia oxidation (AOA and comammox Nitrospira amoA), nitrite reduction (nirK and nirS) and nitrous oxide reduction (nosZ Ⅰ and nosZ Ⅱ) gene abundance and lower N2O production and denitrification potentials than in marsh sediments. Consequently, N2O emission fluxes from the aquaculture ponds (range 5.4-251.8 µg m-2 h-1) were significantly lower than those from the marsh (12.6-570.7 µg m-2 h-1). Overall, our results show that conversion from marsh to shrimp aquaculture ponds in the Shanyutan wetland may have diminished nutrient input from the catchment, impacted the N-cycling microbial community and lowered N2O production capacity of the sediment, leading to lower N2O emissions. Better post-harvesting management of pond water and sediment may further mitigate N2O emissions caused by the aquaculture operation.


Assuntos
Lagoas , Áreas Alagadas , Monitoramento Ambiental , Aquicultura/métodos , Óxido Nitroso/análise , Nitrogênio/análise , Desnitrificação
17.
Sci Total Environ ; 850: 158032, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970464

RESUMO

Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.


Assuntos
Óxido Nitroso , Solo , Desnitrificação , Nitrogênio , Óxido Nitroso/análise , Microbiologia do Solo , Chá
18.
Front Microbiol ; 13: 965293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033880

RESUMO

The excessive usage of nitrogen (N) fertilizers can accelerate the tendency of global climate change. Biological N fixation by diazotrophs contributes substantially to N input and is a viable solution to sustainable agriculture via reducing inorganic N fertilization. However, how manure application influences the abundance, community structure and assembly process of diazotrophs in soil aggregates is not fully understood. Here, we investigated the effect of manure amendment on diazotrophic communities in soil aggregates of an arable soil. Manure application increased soil aggregation, crop yield and the abundance of nifH genes. The abundance of nifH genes increased with aggregate sizes, indicating that diazotrophs prefer to live in larger aggregates. The abundance of nifH genes in large macroaggregates, rather than in microaggregates and silt and clay, was positively associated with plant biomass and crop yield. Both manure application and aggregate size did not alter the Shannon diversity of diazotrophs but significantly changed the diazotrophic community structure. The variation of diazotrophic community structure explained by manure application was greater than that by aggregate size. Manure application promoted the relative abundance of Firmicutes but reduced that of α-Proteobacteria. Stochastic processes played a dominant role in the assembly of diazotrophs in the control treatment. Low-rate manure (9 Mg ha-1) application, rather than medium-rate (18 Mg ha-1) and high-rate (27 Mg ha-1) manure, significantly increased the relative importance of deterministic processes in diazotrophic community assembly. Taken together, our findings demonstrated that long-term manure application increased nifH gene abundance and altered the community structure and assembly process of diazotrophs in soil aggregates, which advanced our understanding of the ecophysiology and functionality of diazotrophs in acidic Ultisols.

19.
Water Res ; 222: 118882, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882096

RESUMO

Methane emissions from aquatic ecosystems play an important role in global carbon cycle and climate change. Reclamation of coastal wetlands for aquaculture use has been shown to have opposite effects on sediment CH4 production potential and CH4 emission flux, but the underlying mechanism remained unclear. In this study, we compared sediment properties, CH4 production potential, emission flux, and CH4 transport pathways between a brackish marsh and the nearby reclaimed aquaculture ponds in the Min River Estuary in southeastern China. Despite that the sediment CH4 production potential in the ponds was significantly lower than the marsh, CH4 emission flux in the ponds (17.4 ± 2.7 mg m-2 h-1) was 11.9 times higher than the marsh (1.3 ±  0.2 mg m-2 h-1). Plant-mediated transport accounted for 75% of the total CH4 emission in the marsh, whereas ebullition accounted for 95% of the total CH4 emission in the ponds. CH4 emission fluxes in both habitat types were highest in the summer. These results suggest that the increase in CH4 emission following the conversion of brackish marsh to aquaculture ponds was not caused by increased sediment CH4 production, but rather by eliminating rhizospheric oxidation and shifting the major transport pathway to ebullition, allowing sediment CH4 to bypass oxidative loss. This study improves our understanding of the impacts of modification of coastal wetlands on greenhouse gas dynamics.


Assuntos
Ecossistema , Áreas Alagadas , Aquicultura/métodos , Dióxido de Carbono , China , Metano/análise , Lagoas
20.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1622-1628, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35729141

RESUMO

Subtropical region of China is one of the global hotspots receiving nitrogen deposition. Nitrogen deposition could affect the abundance and community structure of ammonia oxidizers including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox Nitrospira), with consequences on soil nutrient cycling that are driven by microorganisms. There is limited understanding for the newly discovered comammox Nitrospira in the subtropical forest soils. Here, we investigated the effect of simulated N deposition on abundances of soil ammonia oxidizers in the Castanopsis fargesii Nature Reserve in Xinkou Town, Sanming City, Fujian Province, China. Soil samples were collected from the field plots which received long-term nitrogen deposition with different dosages, including: CK, no additional treatment; LN, low nitrogen deposition treatment, dosage of 40 kg N·hm-2·a-1; and HN, high nitrogen deposition treatment, dosage of 80 kg N·hm-2·a-1. After 8-year treatment, simulated N deposition decreased soil pH and organic matter content, and increased nitrate content. We failed to amplify the amoA gene of AOB in the tested soils. High nitrogen deposition increased the abundance of AOA, but did not affect the abundance of comammox Nitrospira clade A and clade B. The ratio of comammox Nitrospira to AOA decreased with N addition, indicating that N addition weakened the role of comammox Nitrospira in nitrification in the subtropical forest soils. However, there were strong non-specific amplifications for both comammox Nitrospira clades A and B, highlighting the demand for the development of high coverage and specificity primers for comammox Nitrospira investigations in the future. The abundance of comammox Nitrospira clade A was positively correlated with total nitrogen (TN) and NH4+ concentration, while that of clade B was positively associated with soil organic carbon (SOC), TN and NH4+ Concentration. Overall, our findings demonstrated that simulated N deposition increased the relative importance of AOA in nitrification in the natural Castanopsis carlesii forest soil. These findings could provide theoretical support in coping with global change and N deposition in these regions.


Assuntos
Amônia , Solo , Archaea/genética , Bactérias/genética , Carbono , Florestas , Nitrificação , Nitrogênio , Oxirredução , Filogenia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA