Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 16(5): 685-698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536562

RESUMO

Although high-affinity immunoglobulin (Ig)E receptor (FcεRI) expression is upregulated in type 2 (T2)-high asthmatic airway epithelium, its functional role in airway epithelial dysfunction has not been elucidated. Here we report the upregulated expression of FcεRI and p-EGFR (Epidermal Growth Factor Receptor), associated with decreased expression of E-cadherin and claudin-18 in bronchial biopsies of severe T2-high asthmatics compared to mild allergic asthmatics and non-T2 asthmatics. Monomeric IgE (mIgE) decreased the expression of junction proteins, E-cadherin, claudin-18, and ZO-1, and increased alarmin messenger RNA and protein expression in cultured primary bronchial epithelial cells from T2-high asthmatics. Epithelial FcεRI ligation with mIgE decreased transepithelial electric resistance in air-liquid interface cultured epithelial cells. FcεRI ligation with mIgE or IgE- Dinitrophenyl or serum of high-level allergen-specific IgE activated EGFR and Akt via activation of Src family kinases, mediating alarmin expression, junctional protein loss, and increased epithelial permeability. Furthermore, tracheal instillation of mIgE in house dust mite-sensitized mice induced airway hyper-responsiveness, junction protein loss, epithelial cell shedding, and increased epithelial permeability. Thus, our results suggest that IgE-FcεRI cross-linking in the airway epithelium is a potential and unnoticed mechanism for impaired barrier function, increased mucosal permeability, and EGFR-mediated alarmin production in T2-high asthma.

2.
Front Immunol ; 13: 871828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585988

RESUMO

Background and Objectives: The novel coronavirus disease 2019 (COVID-19) has been a pandemic health issue in 30 January 2020. The mortality rate is as high as 50% in critically ill patients. Stem cell therapy is effective for those who are refractory to standard treatments. However, the immune responses that underlie stem cell therapy have not been well reported, particularly, in patients associated with moderate to severe acute respiratory distress syndrome (ARDS). Methods: On Days 0 and 4, an intravenous infusion of 2 × 107 placenta-derived mesenchymal stem cells (pcMSCs) (MatriPlax) were administered to five severe COVID-19 patients refractory to current standard therapies. Peripheral blood inflammatory markers and immune profiles were determined by multi-parameter flow cytometry and studied at Days 0, 4, and 8. Clinical outcomes were also observed. Results: None of the pc-MSC treated patients experienced 28-day mortality compared with the control group and showed a significant improvement in the PaO2/FiO2 ratio, Murray's lung injury scores, reduction in serum ferritin, lactate dehydrogenase (LDH), and C-reactive protein (CRP) levels. The cytokine profiles also showed a reduction in IL-1ß, IFN-γ, IL-2, and IL-6, and an increase in IL-13 and IL-5 type 2 cytokines within 7 days of therapy. Lymphopenia was also significantly improved after 7 days of treatment. Immune cell profiles showed an increase in the proportions of CD4+ T cells (namely, CD4+ naïve T cells and CD4+ memory T cell subtypes), Treg cells, CD19+ B cells (namely, CD19+ naïve B cells, CD27+ switched B cell subtypes) and dendritic cells, and a significant decrease in the proportion of CD14+ monocytes (namely, CD16- classical and CD16+ non-classical subtypes), and plasma/plasmablast cells. No adverse effects were seen at the serial follow-up visits for 2 months after initial therapy. Conclusion: pc-MSCs therapy suppressed hyper-inflammatory states of the innate immune response to COVID-19 infection by increasing Treg cells, decreasing monocytes and plasma/plasmablast cells, and promoting CD4+ T cells and CD19+ B cells toward adaptive immune responses in severely critically ill COVID-19 patients with moderate to severe ARDS, especially those who were refractory to current standard care and immunosuppressive therapies.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , COVID-19/terapia , Estado Terminal , Humanos , Pandemias , Síndrome do Desconforto Respiratório/terapia
3.
Cells ; 9(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861892

RESUMO

The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.


Assuntos
Fibronectinas/metabolismo , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Prognóstico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA