Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Postdoc J ; 4(5): 46-54, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27595121

RESUMO

Almost 20 incurable neurodegenerative disorders are caused by trinucleotide repeat (TNR) expansion beyond a certain threshold, with disease time of onset and severity positively correlating with repeat length. Typically, long TNRs display a bias toward further expansion and repeats continue to expand not only during germline transmissions from parents to offspring, but also remain highly unstable in somatic tissues of patients. Hence, understanding TNR instability mechanisms sheds light on underlying disease pathology. Recently, we showed that activated ATR is the major signal for convergent-transcription-induced cell death at CAG repeats and is regulated by the mismatch repair (MMR) pathway. Additionally, components of other DNA repair pathways such as transcription-coupled nucleotide excision repair (TC-NER) and R-loop resolution by RNaseH reduce cell death. Because activated ATR signals the Fanconi anemia (FA) pathway of interstrand crosslink DNA repair, we asked whether the FA pathway also modulates convergent-transcription-induced cell death at expanded CAG repeats. We show here that siRNA knockdown of FA components-FANCI, FANCJ, FANCM, FANCA, and FANCD2-decreases cell death, suggesting that FA proteins, like MMR proteins, are activators of cell death during convergent transcription.

2.
J Mol Biol ; 428(15): 2978-80, 2016 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-27318194

RESUMO

Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Mutagênese/genética , Estresse Fisiológico/genética , Repetições de Trinucleotídeos/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Recombinação Homóloga/genética , Humanos
3.
DNA Repair (Amst) ; 42: 26-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27131875

RESUMO

Trinucleotide repeat (TNR) expansion beyond a certain threshold results in some 20 incurable neurodegenerative disorders where disease anticipation positively correlates with repeat length. Long TNRs typically display a bias toward further expansion during germinal transmission from parents to offspring, and then are highly unstable in somatic tissues of affected individuals. Understanding mechanisms of TNR instability will provide insights into disease pathogenesis. Previously, we showed that enhanced convergent transcription at long CAG repeat tracks induces TNR instability and cell death via ATR activation. Components of TC-NER (transcription-coupled nucleotide excision repair) and RNaseH enzymes that resolve RNA/DNA hybrids oppose cell death, whereas the MSH2 component of MMR (mismatch repair) enhances cell death. The exact role of the MMR pathway during convergent transcription-induced cell death at CAG repeats is not well understood. In this study, we show that siRNA knockdowns of MMR components-MSH2, MSH3, MLHI, PMS2, and PCNA-reduce DNA toxicity. Furthermore, knockdown of MSH2, MLH1, and PMS2 significantly reduces the frequency of ATR foci formation. These observations suggest that MMR proteins activate DNA toxicity by modulating ATR foci formation during convergent transcription.


Assuntos
Reparo de Erro de Pareamento de DNA , Transcrição Gênica/genética , Repetições de Trinucleotídeos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Morte Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Ativação Enzimática/genética , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 Homóloga a MutL/deficiência , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , RNA Interferente Pequeno/genética
4.
Proc Natl Acad Sci U S A ; 112(12): 3764-9, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775519

RESUMO

The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.


Assuntos
Mutagênese , Estresse Fisiológico , Repetições de Trinucleotídeos , Temperatura Baixa , DNA/química , DNA/genética , Reparo do DNA , Replicação do DNA , Redes Reguladoras de Genes , Instabilidade Genômica , Proteínas de Fluorescência Verde/química , Células HEK293 , Temperatura Alta , Humanos , Repetições de Microssatélites , Estresse Oxidativo , Fenótipo , Expansão das Repetições de Trinucleotídeos
5.
Mol Biol Rep ; 41(9): 5627-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25012912

RESUMO

Microsatellite sequences, composed of short tandem repeats and randomly distributed in human genome, can become unstable during various DNA metabolic processes. Expansions of CAG, GAA, CGG and CCTG repeats located in specific genes are responsible for several human disorders. It is known that a major percentage of human genes simultaneously express both sense and antisense transcripts. Recently, we reported that convergent transcription through a CAG95 tract in human cells leads to cell cycle arrest as well as robust apoptosis. In this study, we studied the effects of convergent transcription through other types of repeats, using cell lines that contain substrates with inducible sense and antisense transcription through CGG66, GAA102, or CCTG134 tracts. We found that convergent transcription through all these repeats inhibits cell growth and induces cell death, though more moderately than convergent transcription through a CAG tract. These results suggest that convergent transcription through various types of tandem repeats represent a novel type of stress to cells.


Assuntos
Repetições de Microssatélites , Transcrição Gênica , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Genoma Humano , Humanos
6.
Cell Mol Life Sci ; 71(12): 2359-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24257896

RESUMO

To investigate whether mammalian cells can carry out recombinational double-strand break (DSB) repair between highly diverged sequences, mouse fibroblasts were transfected with DNA substrates that contained a "recipient" thymidine kinase (tk) gene disrupted by the recognition site for endonuclease I-SceI. Substrates also contained a linked "donor" tk gene sequence. Following DSB induction by I-SceI, selection for tk-expressing clones allowed recovery of repair events occurring by nonhomologous end-joining or recombination with the donor sequence. Although recombinational repair was most efficient when donor and recipient shared near-perfect homology, we recovered recombination events between recipient and donor sequences displaying 20 % nucleotide mismatch. Recombination between such imperfectly matched ("homeologous") sequences occurred at a frequency of 1.7 × 10(-7) events per cell and constituted 3 % of the DSB repair events recovered with the pair of homeologous sequences. Additional experiments were done with a substrate containing a donor sequence comprised of a region sharing high homology with the recipient and an adjacent region homeologous to the recipient. Recombinational DSB repair tracts initiating within high homology propagated into homeology in 11 of 112 repair events. These collective results contrasted with our earlier work in which spontaneous recombination (not intentionally induced by a DSB) between homeologous sequences occurred at an undetectable frequency of less than 10(-9) events per cell, and in which events initiating within high homology propagated into adjoining homeology in one of 81 events examined. Our current work suggests that homology requirements for recombination are effectively relaxed in proximity to a DSB in a mammalian genome.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Genética , Animais , Sequência de Bases , Células Cultivadas , Dano ao DNA , Reparo do DNA , Especiação Genética , Genoma , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Timidina Quinase/genética
7.
DNA Repair (Amst) ; 12(7): 480-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23707303

RESUMO

Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells. Here we report that chromosomal DSBs with compatible ends introduced by the rare-cutting endonuclease, ISceI, are repaired by precise ligation nearly 100% of the time in human cells. Precise ligation depends on the classical NHEJ components Ku70, XRCC4, and DNA ligase IV, since siRNA knockdowns of these factors significantly reduced the efficiency of precise ligation. Interestingly, knockdown of the tumor suppressors p53 or BRCA1 showed similar effects as the knockdowns of NHEJ factors. In contrast, knockdown of components involved in alternative NHEJ, mismatch repair, nucleotide excision repair, and single-strand break repair did not reduce precise ligation. In summary, our results demonstrate that DSBs in human cells are efficiently repaired by precise ligation, which requires classical NHEJ components and is enhanced by p53 and BRCA1.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Ligases/metabolismo , Reparo de DNA por Recombinação , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Humanos , Autoantígeno Ku , Ligadura , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
PLoS One ; 7(10): e46807, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056461

RESUMO

Expansion of CAG•CTG tracts located in specific genes is responsible for 13 human neurodegenerative disorders, the pathogenic mechanisms of which are not yet well defined. These disease genes are ubiquitously expressed in human tissues, and transcription has been identified as one of the major pathways destabilizing the repeats. Transcription-induced repeat instability depends on transcription-coupled nucleotide excision repair (TC-NER), the mismatch repair (MMR) recognition component MSH2/MSH3, and RNA/DNA hybrids (R-loops). Recently, we reported that simultaneous sense and antisense transcription-convergent transcription-through a CAG repeat not only promotes repeat instability, but also induces a cell stress response, which arrests the cell cycle and eventually leads to massive cell death via apoptosis. Here, we use siRNA knockdowns to investigate whether NER, MMR, and R-loops also modulate convergent-transcription-induced cell death and repeat instability. We find that siRNA-mediated depletion of TC-NER components increases convergent transcription-induced cell death, as does the simultaneous depletion of RNase H1 and RNase H2A. In contrast, depletion of MSH2 decreases cell death. These results identify TC-NER, MMR recognition, and R-loops as modulators of convergent transcription-induced cell death and shed light on the molecular mechanism involved. We also find that the TC-NER pathway, MSH2, and R-loops modulate convergent transcription-induced repeat instability. These observations link the mechanisms of convergent transcription-induced repeat instability and convergent transcription-induced cell death, suggesting that a common structure may trigger both outcomes.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA/genética , Transcrição Gênica/genética , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Humanos , RNA Interferente Pequeno
9.
Hum Mol Genet ; 20(24): 4822-30, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21926083

RESUMO

Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription. These abnormal structures are thought to trigger changes in TNR length. We have previously shown that transcription-induced TNR instability in cultured human cells depends on several genes known to be involved in transcription-coupled nucleotide excision repair (NER). We hypothesized that NER normally functions to destabilize expanded TNRs. To test this hypothesis, we bred an Xpa null allele, which eliminates NER, into the TNR mouse model for spinocerebellar ataxia type 1 (SCA1), which carries an expanded CAG repeat tract at the endogenous mouse Sca1 locus. We find that Xpa deficiency does not substantially affect TNR instability in either the male or female germline; however, it dramatically reduces CAG repeat instability in neuronal tissues-striatum, hippocampus and cerebral cortex-but does not alter CAG instability in kidney or liver. The tissue-specific effect of Xpa deficiency represents a novel finding; it suggests that tissue-to-tissue variation in CAG repeat instability arises, in part, by different underlying mechanisms. These results validate our original findings in cultured human cells and suggest that transcription may induce NER-dependent TNR instability in neuronal tissues in humans.


Assuntos
Instabilidade Genômica/genética , Neurônios/metabolismo , Neurônios/patologia , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Animais , Ataxina-1 , Ataxinas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Loci Gênicos/genética , Células Germinativas/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Ataxias Espinocerebelares/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética
10.
Mol Cell Biol ; 31(15): 3105-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628532

RESUMO

Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical library in a moderately high-throughput assay and identified 18 novel inducers of repeat contraction. A subset of these compounds targeted pathways involved in the management of DNA supercoiling associated with transcription. Further analyses using both small molecule inhibitors and small interfering RNA (siRNA)-mediated knockdowns demonstrated the involvement of topoisomerase 1 (TOP1), tyrosyl-DNA phosphodiesterase 1 (TDP1), and single-strand break repair (SSBR) in modulating transcription-dependent CAG repeat contractions. The TOP1-TDP1-SSBR pathway normally functions to suppress repeat instability, since interfering with it stimulated repeat contractions. We further showed that the increase in repeat contractions when the TOP1-TDP1-SSBR pathway is compromised arises via transcription-coupled nucleotide excision repair, a previously identified contributor to transcription-induced repeat instability. These studies broaden the scope of pathways involved in transcription-induced CAG repeat instability and begin to define their interrelationships.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA/fisiologia , DNA Topoisomerases Tipo I/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Linhagem Celular Tumoral , DNA/química , DNA Topoisomerases Tipo I/genética , Instabilidade Genômica , Ensaios de Triagem em Larga Escala , Humanos , Doenças Neurodegenerativas/genética , Diester Fosfórico Hidrolases/genética , Reação em Cadeia da Polimerase , Interferência de RNA , RNA Interferente Pequeno , Bibliotecas de Moléculas Pequenas , Inibidores da Topoisomerase I/farmacologia , Transcrição Gênica
11.
Cell Cycle ; 10(4): 611-8, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21293182

RESUMO

Trinucleotide repeats (TNR) are a blessing and a curse. In coding regions, where they are enriched, short repeats offer the potential for continuous, rapid length variation with linked incremental changes in the activity of the encoded protein, a valuable source of variation for evolution. But at the upper end of these benign and beneficial lengths, trinucleotide repeats become very unstable, with a dangerous bias toward continual expansion, which can lead to neurological diseases in humans. The mechanisms of expansion are varied and the links to disease are complex. Where they have been delineated, however, they have often revealed unexpected, fundamental aspects of the underlying cell biology. Nowhere is this more apparent than in recent studies, which indicate that expanded CAG repeats can form toxic sites in the genome, which can, upon interaction with normal components of DNA metabolism, trigger cell death. Here we discuss the phenomenon of TNR-induced DNA toxicity, with special emphasis on the role of transcription. Transcription-induced DNA toxicity may have profound biological consequences, with particular relevance to repeat-associated neurodegenerative diseases.


Assuntos
Apoptose/genética , DNA/metabolismo , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos/genética , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Humanos , Doenças Neurodegenerativas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
12.
Mol Cell Biol ; 30(18): 4435-51, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20647539

RESUMO

Short repetitive sequences are common in the human genome, and many fall within transcription units. We have previously shown that transcription through CAG repeat tracts destabilizes them in a way that depends on transcription-coupled nucleotide excision repair and mismatch repair. Recent observations that antisense transcription accompanies sense transcription in many human genes led us to test the effects of antisense transcription on triplet repeat instability in human cells. Here, we report that simultaneous sense and antisense transcription (convergent transcription) initiated from two inducible promoters flanking a CAG95 tract in a nonessential gene enhances repeat instability synergistically, arrests the cell cycle, and causes massive cell death via apoptosis. Using chemical inhibitors and small interfering RNA (siRNA) knockdowns, we identified the ATR (ataxia-telangiectasia mutated [ATM] and Rad3 related) signaling pathway as a key mediator of this cellular response. RNA polymerase II, replication protein A (RPA), and components of the ATR signaling pathway accumulate at convergently transcribed repeat tracts, accompanied by phosphorylation of ATR, CHK1, and p53. Cell death depends on simultaneous sense and antisense transcription and is proportional to their relative levels, it requires the presence of the repeat tract, and it occurs in both proliferating and nonproliferating cells. Convergent transcription through a CAG repeat represents a novel mechanism for triggering a cellular stress response, one that is initiated by events at a single locus in the genome and resembles the response to DNA damage.


Assuntos
Apoptose/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Animais , Elementos Antissenso (Genética) , Proteínas Mutadas de Ataxia Telangiectasia , Inibidores de Caspase , Caspases/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Cell Stress Chaperones ; 15(5): 753-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20373063

RESUMO

The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts. By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression of new phenotypes through induction of novel genetic variation.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Repetições de Trinucleotídeos/genética , Linhagem Celular , Proteínas de Choque Térmico HSP90/genética , Humanos , Immunoblotting , Instabilidade de Microssatélites , RNA Interferente Pequeno , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(2): 692-7, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080737

RESUMO

Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA.DNA hybrids enhances the instability of CTG.CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA.DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG.CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG.CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG.CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA.DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG.CAG tracts promote instability of DNA trinucleotide repeats.


Assuntos
Repetições de Trinucleotídeos/genética , DNA/química , DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Doenças Genéticas Inatas/genética , Instabilidade Genômica , Humanos , Hibridização de Ácido Nucleico/genética , RNA/química , RNA/genética , RNA Bacteriano/genética , Ribonuclease H/metabolismo , Moldes Genéticos , Transcrição Gênica
15.
Neoplasia ; 11(8): 753-62, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19649205

RESUMO

Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis. Amplification of the MYCN oncogene correlates with the most clinically aggressive form of the cancer, and MDM2, a primary inhibitor of the p53 tumor suppressor, is a direct transcriptional target of, and positively regulated by, both MYCN and MYCC. We hypothesize that MDM2 contributes to MYCN-driven tumorigenesis helping to ameliorate p53-dependent apoptotic oncogenic stress during tumor initiation and progression. To study the interaction of MYCN and MDM2, we generated an Mdm2 haploinsufficient transgenic animal model of neuroblastoma. In Mdm2(+/-)MYCN transgenics, tumor latency and animal survival are remarkably extended, whereas tumor incidence and growth are reduced. Analysis of the Mdm2/p53 pathway reveals remarkable p53 stabilization counter-balanced by epigenetic silencing of the p19(Arf) gene in the Mdm2 haploinsufficient tumors. In human neuroblastoma xenograft models, conditional small interfering RNA-mediated knockdown of MDM2 in cells expressing wild-type p53 dramatically suppresses tumor growth in a p53-dependent manner. In summary, we provided evidence for a crucial role for direct inhibition of p53 by MDM2 and suppression of the p19(ARF)/p53 axis in neuroblastoma tumorigenesis, supporting the development of therapies targeting these pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Animais , Western Blotting , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
DNA Repair (Amst) ; 8(8): 878-85, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19497791

RESUMO

Several neurodegerative diseases are caused by expansion of a trinucleotide repeat tract in a critical gene. The mechanism of repeat instability is not yet defined, but in mice it requires MutSbeta, a complex of MSH2 and MSH3. We showed previously that transcription through a CAG repeat tract induces repeat instability in human cells via a pathway that requires the mismatch repair (MMR) components, MSH2 and MSH3, and the entire transcription-coupled nucleotide excision repair pathway [Y. Lin, V. Dion, J.H. Wilson, Transcription promotes contraction of CAG repeat tracts in human cells, Nat. Struct. Mol. Biol. 13 (2006) 179-180; Y. Lin, J.H. Wilson, Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair, Mol. Cell Biol. 27 (2007) 6209-6217]. Here, we examine the role of downstream MMR processing components on transcription-induced CAG instability, using our selection assay for repeat contraction. In contrast to knockdowns of MSH2 or MSH3, which reduce repeat contractions, we show that siRNA-mediated depletion of MLH1 or PMS2 increases contraction frequency. Knockdown of DNMT1, which has been identified as an MMR factor in genetic studies, also elevates the frequency of contraction. Simultaneous knockdowns of MLH1 or DNMT1 along with MSH2, XPA, or BRCA1, whose individual knockdowns each decrease CAG contraction, yield intermediate frequencies. In sharp contrast, double knockdown of MLH1 and DNMT1 additively increases the frequency of CAG contraction. These results show that MMR components can alter repeat stability in diverse ways, either enhancing or suppressing CAG contraction, and they provide insight into the influence of MMR components on transcription-induced CAG repeat instability.


Assuntos
Reparo de Erro de Pareamento de DNA , Instabilidade Genômica/genética , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
17.
Proc Natl Acad Sci U S A ; 106(24): 9607-12, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19482946

RESUMO

Expanded triplet repeats have been identified as the genetic basis for a growing number of neurological and skeletal disorders. To examine the contribution of double-strand break repair to CAG x CTG repeat instability in mammalian systems, we developed zinc finger nucleases (ZFNs) that recognize and cleave CAG repeat sequences. Engineered ZFNs use a tandem array of zinc fingers, fused to the FokI DNA cleavage domain, to direct double-strand breaks (DSBs) in a site-specific manner. We first determined that the ZFNs cleave CAG repeats in vitro. Then, using our previously described tissue culture assay for identifying modifiers of CAG repeat instability, we found that transfection of ZFN-expression vectors induced up to a 15-fold increase in changes to the CAG repeat in human and rodent cell lines, and that longer repeats were much more sensitive to cleavage than shorter ones. Analysis of individual colonies arising after treatment revealed a spectrum of events consistent with ZFN-induced DSBs and dominated by repeat contractions. We also found that expressing a dominant-negative form of RAD51 in combination with a ZFN, dramatically reduced the effect of the nuclease, suggesting that DSB-induced repeat instability is mediated, in part, through homology directed repair. These studies identify a ZFN as a useful reagent for characterizing the effects of DSBs on CAG repeats in cells.


Assuntos
Dano ao DNA , Instabilidade Genômica , Repetições de Trinucleotídeos , Dedos de Zinco , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA , Humanos , Mutação
18.
Mol Carcinog ; 48(4): 350-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18973172

RESUMO

Triplet repeat expansion is the molecular basis for several human diseases. Intensive studies using systems in bacteria, yeast, flies, mammalian cells, and mice have provided important insights into the molecular processes that are responsible for mediating repeat instability. The age-dependent, ongoing repeat instability in somatic tissues, especially in terminally differentiated neurons, strongly suggests a robust role for pathways that are independent of DNA replication. Several genetic studies have indicated that transcription can play a critical role in repeat instability, potentially providing a basis for the instability observed in neurons. Transcription-induced repeat instability can be modulated by several DNA repair proteins, including those involved in mismatch repair (MMR) and transcription-coupled nucleotide excision repair (TC-NER). Though the mechanism is unclear, it is likely that transcription facilitates the formation of repeat-specific secondary structures, which act as intermediates to trigger DNA repair, eventually leading to changes in the length of the repeat tract. In addition, other processes associated with transcription can also modulate repeat instability, as shown in a variety of different systems. Overall, the mechanisms underlying repeat instability in humans are unexpectedly complicated. Because repeat-disease genes are widely expressed, transcription undoubtedly contributes to the repeat instability observed in many diseases, but it may be especially important in nondividing cells. Transcription-induced instability is likely to involve an extensive interplay not only of the core transcription machinery and DNA repair proteins, but also of proteins involved in chromatin remodeling, regulation of supercoiling, and removal of stalled RNA polymerases, as well as local DNA sequence effects.


Assuntos
Instabilidade Genômica , Transcrição Gênica , Repetições de Trinucleotídeos/genética , Animais , Humanos
19.
Hum Mol Genet ; 17(9): 1306-17, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18252747

RESUMO

Expanded CAG repeat tracts are the cause of at least a dozen neurodegenerative disorders. In humans, long CAG repeats tend to expand during transmissions from parent to offspring, leading to an earlier age of disease onset and more severe symptoms in subsequent generations. Here, we show that the maintenance DNA methyltransferase Dnmt1, which preserves the patterns of CpG methylation, plays a key role in CAG repeat instability in human cells and in the male and female mouse germlines. SiRNA knockdown of Dnmt1 in human cells destabilized CAG triplet repeats, and Dnmt1 deficiency in mice promoted intergenerational expansion of CAG repeats at the murine spinocerebellar ataxia type 1 (Sca1) locus. Importantly, Dnmt1(+/-) SCA1 mice, unlike their Dnmt1(+/+) SCA1 counterparts, closely reproduced the intergenerational instability patterns observed in human SCA1 patients. In addition, we found aberrant DNA and histone methylation at sites within the CpG island that abuts the expanded repeat tract in Dnmt1-deficient mice. These studies suggest that local chromatin structure may play a role in triplet repeat instability. These results are consistent with normal epigenetic changes during germline development contributing to intergenerational instability of CAG repeats in mice and in humans.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Mutação em Linhagem Germinativa , Expansão das Repetições de Trinucleotídeos , Fatores Etários , Animais , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Instabilidade Genômica , Genótipo , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ataxias Espinocerebelares/genética , Testículo/metabolismo , Transcrição Gênica
20.
DNA Repair (Amst) ; 7(2): 313-20, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18083071

RESUMO

Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells. Based on previous reports that demethylation increases homologous recombination (HR), and our own observations that HR destabilizes triplet repeats, we hypothesized that demethylation alters repeat stability by stimulating HR. Here, we test that hypothesis at the adenosine phosphoribosyl transferase (Aprt) locus in CHO cells, where CpG demethylation and HR have both been shown to increase CAG repeat instability. We find that the rate of HR at the Aprt locus is not altered by demethylation. The spectrum of recombinants, however, was shifted from the usual 6:1 ratio of conversions to crossovers to more equal proportions in 5-aza-CdR-treated cells. The subtle influences of demethylation on HR at the Aprt locus are not sufficient to account for its dramatic effects on repeat instability. We conclude that 5-aza-CdR promotes triplet repeat instability independently of HR.


Assuntos
Metilação de DNA , Instabilidade Genômica/genética , Recombinação Genética/genética , Repetições de Trinucleotídeos/genética , Adenina Fosforribosiltransferase/genética , Animais , Azacitidina/análogos & derivados , Células CHO , Cricetinae , Cricetulus , Primers do DNA/genética , Decitabina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA