Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(30): 8898-8903, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29979878

RESUMO

Highly transparent and superhydrophilic sapphire with surface antireflective subwavelength structures were prepared by wet etching using colloidal monolayer silica masks. The film thicknesses of the silica masks were adjusted by the volume concentrations of polystyrene spheres. The evolution of etching morphologies of sapphire was studied, and antireflective concave pyramid nanoarrays on sapphire substrates were designed by calculation and were then prepared. The transmission and wettability of as-obtained patterned sapphire substrates were also investigated. As for sapphire with optimum surface concave micropyramid arrays, average visible transmittance can reach 91.7%, which is apparently higher than that of flat sapphire (85.5%). Moreover, the concave pyramid arrays can significantly increase the surface hydrophilicity of sapphire, exhibiting a water contact angle of 12.6° compared with 62.7° of flat sapphire. The proposed method can be an excellent strategy for preparing antireflective and self-cleaning concave micropyramid subwavelength structures on sapphire without complicated equipment and expensive raw materials.

2.
Nanotechnology ; 29(5): 055302, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29303115

RESUMO

Compared with conventional anti-reflective film, an anti-reflective sub-wavelength surface structure provides an ideal choice for a sapphire optical window especially in harsh environments. However, it is still a challenge to obtain a sapphire anti-reflective surface microstructure because of its high hardness and chemical inertness. In this paper, combined with optical simulation, we proposed a facile method based on the anodic oxidation of aluminum film and following epitaxial annealing. Al thin film was deposited on a sapphire substrate by magnetron sputtering, and anodic oxidation was then performed to prepare surface pore-like structures on the Al film. Followed by two-step annealing, both the anodic oxidized coating and underlying unoxidized Al film were transformed totally into alumina. The parameters of anodic oxidation were analyzed to obtain the optimal pore-like structures for the antireflection in the mid-infrared and visible spectrum regions, respectively. Finally, the optimized surface sub-wavelength nanostructure on sapphire can increase the transmittance by 7% in the wavelength range of 3000-5000 nm and can increase 13.2% significantly for visible spectrum region, respectively. Meanwhile, the surface wettability can be also manipulated effectively. The preparation of surface pore-like sub-wavelength structure by the annealing of anodic oxidized aluminum film on sapphire is a feasible, economical and convenient approach and can find the applications for various optoelectronic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA