Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770359

RESUMO

To improve the material removal efficiency and surface quality of single-crystal silicon after magnetorheological finishing, a novel green chemical-mechanical magnetorheological finishing (CMMRF) fluid was developed. The main components of the CMMRF fluid are nano-Fe3O4, H2O2, CH3COOH, nanodiamond, carbonyl iron powder, and deionized water. The novel CMMRF fluid can simultaneously achieve Ra 0.32 nm (0.47 mm × 0.35 mm measurement area), Ra 0.22 nm (5 µm × 5 µm measurement area), and 1.91 × 10-2 mm3/min material removal efficiency. Comprehensive studies utilizing a scanning electron microscope and a magnetic rheometer show that the CMMRF fluid has a high mechanical removal effect due to the well-dispersed nanodiamond and nano-Fe3O4 particles. The results of Fourier transform infrared spectra and Young's modulus test reveal the mechanism of the chemical reaction and the mechanical characteristics deterioration of the modified layer. Under co-enhanced chemical and mechanical effects, an ultra-smooth and highly efficient MRF technology for single-crystal silicon is realized.

2.
Opt Express ; 30(26): 46157-46169, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558577

RESUMO

Magnetorheological finishing (MRF) is a sub-aperture polishing process, which is often used to correct surface errors and remove sub-surface damage after grinding. A strong correlation exists between the material removal rate and surface roughness in MRF, but current theoretical models are incapable of predicting these two factors at the same time. In this paper, a theoretical model was developed to describe the material removal rate and surface quality after MRF in order to better understand the material removal mechanism of MRF and explain the relationship between surface roughness and material removal rate. Two modes of experiments (uniform polishing and fixed point polishing) were conducted on monocrystalline silicon to obtain the results of surface roughness and removal rate. The experimental results are highly consistent with the theoretical model calculated results. The theoretical model could be a reference for high-efficiency and ultra-smooth MRF process.

3.
Appl Opt ; 61(27): 7991-7998, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255920

RESUMO

X ray mirrors are symmetrical workpieces along the length and width and are widely used in various optical systems. Unlike the center-symmetric circular mirror, it is more difficult to suppress the edge effect of the x ray mirror during the polishing process, which greatly limits the polishing accuracy and polishing efficiency. Based on this, the unique edge effect of x ray mirrors is investigated in depth in this paper. First, the causes and distribution laws of the edge effect of the x ray mirror were obtained by analyzing the inherent structure of the computer controlled optical surface (CCOS) and the motion trajectory of the polishing tool. Second, a mathematical model was established based on the material removal states of different regions on the x ray mirror. Finally, a combined polishing process based on the influence function of different shaped tools is proposed and experimentally verified. The results show that the edge effect on the x ray mirror is significantly weakened and its surface errors peak to valley (PV) and RMS are increased by 21.5 times and 47.9 times, respectively. This indicates that the combined polishing process has a good suppression effect on the edge effect of the x ray mirror.

4.
Materials (Basel) ; 13(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32182972

RESUMO

Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted. The results reveal that IBE has an evident cleaning effect on surfaces. Impurity contamination beneath the polishing redeposition layer can be mitigated through IBE. Chemical structural defects can be significantly reduced, and surface densification is weakened after IBE without damaging the precision of the fused silica surface. The photothermal absorption on the fused silica surface can be decreased by 41.2%, and the laser-induced damage threshold can be raised by 15.2% after IBE at 250 nm. This work serves as an important reference for characterizing nanoscale damage precursors and using IBE technology to increase the laser damage resistance of fused silica optics.

5.
Sci Rep ; 10(1): 2579, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054930

RESUMO

This paper presented a conformal smoothing theory, and smoothing capability evaluation was established on the proposed theory. According to pressure distribution model, processing parameters have been optimized and the CPP sample with a size of 340 × 340 mm was applied in conformal smoothing. The middle spatial frequency was effectively corrected with the total polishing time of 750 min, and energy was constringed 32.2 times (improved from 57.68 nm2·mm to 1.79 nm2·mm). Meanwhile, surface roughness RMS (root mean square) maintained at the same scale (changed from 265.4 nm to 265.2 nm). Parametric conformal smoothing was proven to be an effective method to control the middle spatial frequency error of CPPs.

6.
Materials (Basel) ; 13(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991701

RESUMO

The silica opticsare widely applied in the modern laser system, and its fabrication is always the research focus. In the manufacturing process, the lapping process occurs between grinding and final polishing. However, lapping processes optimizations focus on decreasing the depth of sub-surface damage (SSD) or improving lapping efficiency individually. So, the optimum balance point between efficiency and damageshould be studied further. This manuscript establishes the effective removal rate of damage (ERRD)model, and the relationship between the ERRD and processing parameters is simulated. Then, high-efficiency, low-damage lapping processing routine is established based on the simulation. The correctness and feasibility are validated. In this work, the optimized method is confirmed that it can improve efficiency and decrease damage layer depth in the lapping process which promotes the development of optics in low-damage fabrication.

7.
Opt Express ; 27(8): 10826-10838, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052937

RESUMO

Near-surface nanoscale damage precursor generated from the fabrication process has great influence on laser-induced damage threshold improvement of fused silica. In this work, high-resolution transmission electron microscopy (HRTEM) is used to characterize the arrangement of material particles near surface. The nanoscale defects in the Beilby layer could be clearly distinguished. And we find ion beam etching (IBE) has little effect on the arrangement of material particles. This microscopic phenomenon makes IBE a promising technique for the detection of nanoscale near-surface damage precursors. To further investigate the nanoscale near-surface damage after chemical mechanical polishing, a trench is generated by ion sputtering to contain the nature and characteristics of nanoscale precursors in different depths. The evolutions of chemical structure defects and nanoparticles are measured and their laser-induced absorption performance are tested. The results show that there is a nanoscale defect layer (~360nm) beneath the Beilby layer. A model for nanoscale defect layer of fused silica after CMP is offered. In the model, the quantitative density of nanoparticles falls exponentially with increasing the depth and the contents of ODC and NBOHC decreases linearly, respectively. Research results can be a reference on characterizing nanoscale defects near surface and conducting post-processing technologies to improve the laser damage resistance property of fused silica.

8.
Environ Monit Assess ; 182(1-4): 61-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21207133

RESUMO

Nonylphenol (NP) is regarded as a kind of persistent organic pollutant which exists ubiquitously in the environment. The objective of this study was to evaluate the effects of NP on Chlorella vulgaris physiological indices and gene transcription. The results showed that NP stress inhibited algal growth in short-term bioassay. NP also decreased chlorophyll content, including chl a, chl b, and total chlorophyll. NP caused oxidant hurt by overproducing reactive oxygen species (ROS), which might destroy the overall membrane system to cause malondialdehyde content increase. NP inhibited photosynthesis-related gene transcription in C. vulgaris after 24 to 48 h exposure. The lowest transcript levels of psaB, psbA, and rbcL in C. vulgaris decreased to only 18.5%, 7%, and 4% of the control, respectively. Taken together, our results demonstrate that NP is toxic to fresh algae growth by affecting the photosynthesis-related genes transcription and overproducing ROS to disrupt cell structure in a short period.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Fenóis/toxicidade , Fotossíntese/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Dalton Trans ; 39(13): 3163-6, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20449441

RESUMO

A series of cyanobipyridine-derived zinc(II) bis(thiolate) complexes are prepared rapidly and efficiently by a microwave-assisted cross-coupling/complexation sequence and display luminescence that can be modulated using intrinsic functionality and ancillary ligands.

10.
Chem Commun (Camb) ; (34): 5165-7, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20448981

RESUMO

Nicotinonitrile chromophores with two tunable functions, excellent photophysical properties and solvatochromic behaviour can be prepared quickly and efficiently by microwave-assisted tandem oxidation/Bohlmann-Rahtz heteroannulation followed by copper(I)-mediated N-arylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA