Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881254

RESUMO

Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping. In this study, we gathered genome-wide SNPs using restriction-site associated DNA sequencing (RADseq) from 190 samples of Q. acerifolia and three of its close relatives, Q. shumardii, Q. buckleyi, and Q. rubra. We found that Q. shumardii and Q. acerifolia are reciprocally monophyletic with low support, suggesting incomplete lineage sorting, introgression between Q. shumardii and Q. acerifolia, or both. Analyses that model allele distributions demonstrate that admixture contributes strongly to this pattern. Populations of Q. acerifolia experience gene flow from Q. shumardii and Q. rubra, but we found evidence that divergent selection is likely maintaining species boundaries: 1) ex situ collections of Q. acerifolia have a higher proportion of hybrids compared to the mature trees of the wild populations, suggesting ecological selection against hybrids at the seed/seedling stage; 2) ecological traits co-vary with genomic composition; and 3) Q. acerifolia shows genetic differentiation at loci hypothesized to influence tolerance of radiation, drought, and high temperature. Our findings strongly suggest that in maple-leaf oak, selection results in higher divergence at regions of the genome despite gene flow from close relatives.

2.
Appl Plant Sci ; 12(3): e11589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912126

RESUMO

Premise: Although ex situ collections of threatened plants are most useful when they contain maximal genetic variation, the conservation and maintenance of genetic diversity in collections are often poorly known. We present a case study using population genomic analyses of an ex situ collection of Karomia gigas, a critically endangered tropical tree from Tanzania. Only ~43 individuals are known in two wild populations, and ex situ collections containing 34 individuals were established in two sites from wild-collected seed. The study aimed to understand how much diversity is represented in the collection, analyze the parentage of ex situ individuals, and identify efficient strategies to capture and maintain genetic diversity. Methods: We genotyped all known individuals using a 2b-RADseq approach, compared genetic diversity in wild populations and ex situ collections, and conducted parentage analysis of the collections. Results: Wild populations were found to have greater levels of genetic diversity than ex situ populations as measured by number of private alleles, number of polymorphic sites, observed and expected heterozygosity, nucleotide diversity, and allelic richness. In addition, only 32.6% of wild individuals are represented ex situ and many individuals were found to be the product of selfing by a single wild individual. Discussion: Population genomic analyses provided important insights into the conservation of genetic diversity in K. gigas, identifying gaps and inefficiencies, but also highlighting strategies to conserve genetic diversity ex situ. Genomic analyses provide essential information to ensure that collections effectively conserve genetic diversity in threatened tropical trees.

3.
J Hered ; 113(3): 336-352, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192705

RESUMO

Many factors shape the genetic diversity of island-endemic trees, with important implications for conservation. Oceanic island-endemic lineages undergo an initial founding bottleneck during the colonization process and subsequently accumulate diversity following colonization. Moreover, many island endemics occur in small populations and are further threatened by anthropogenic factors that cause population declines, making them susceptible to losses in genetic diversity through genetic drift, inbreeding, and bottlenecks. However, life-history traits commonly found in trees, such as outcrossing mechanisms, long lifespans, and a propensity for interspecific hybridization, may help buffer against losses of genetic variation. To assess the relative importance of colonization history, rarity, and distribution in shaping genetic diversity of island-endemic trees, we conducted a comparative population genomic analysis of 13 species of Diospyros (Ebenaceae) endemic to the Mascarene Islands that differ in island colonization history, distribution, population size, and IUCN threat status. We genotyped 328 individuals across the islands using 2b-RADseq, compared genetic diversity both among and within species, and assessed patterns of genetic structure. Genetic diversity did not vary significantly by IUCN status, but we found that species that co-occur with others on the same intermediate-aged island (Mauritius) had much greater genetic diversity than those that occur solitarily on an island (Réunion and Rodrigues), likely because of greater interspecific hybridization among species with overlapping distributions and processes related to time since island colonization. Results presented here were used to determine priority localities for in situ and ex situ conservation efforts to maximize the genetic diversity of each Mascarene Diospyros species.


Assuntos
Diospyros , Árvores , Idoso , Diospyros/genética , Deriva Genética , Variação Genética , Humanos , Hibridização Genética , Árvores/genética
4.
New Phytol ; 232(6): 2506-2519, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34379801

RESUMO

Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre-adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes. We develop a novel approach and method based on the decomposition of species turnover into within- and among-clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots. We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes. Our results suggest that immigration and sorting of clades pre-adapted to montane habitats is the primary mechanism shaping tree communities across elevations.


Assuntos
Biodiversidade , Ecossistema , Filogenia
5.
PLoS One ; 16(3): e0247586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705416

RESUMO

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Assuntos
Brassicaceae/genética , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Variação Genética , Genoma de Planta , Arkansas , DNA de Plantas/genética , Fluxo Gênico , Deriva Genética , Genótipo , Endogamia , Repetições de Microssatélites/genética , Missouri
6.
Mol Ecol ; 30(18): 4520-4537, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33210759

RESUMO

A common pattern observed in temperate tree clades is that species are often morphologically distinct and partially interfertile but maintain species cohesion despite ongoing hybridization where ranges overlap. Although closely related species commonly occur in sympatry in tropical ecosystems, little is known about patterns of hybridization within a clade over time, and the implications of this hybridization for the maintenance of species boundaries. In this study, we focused on a clade of sympatric trees in the genus Diospyros in the Mascarene islands and investigated whether species are genetically distinct, whether they hybridize, and how patterns of hybridization are related to the time since divergence among species. We sampled multiple populations from each of 12 Mascarene Diospyros species, generated genome-wide single nucleotide polymorphism data using 2bRADseq, and conducted population genomic and phylogenomic analyses. We found that Mascarene Diospyros species diverged millions of years ago and are today largely genetically distinct from one another. Although hybridization was observed between closely related species belonging to the same subclade, more distantly related species showed little evidence of interspecific hybridization. Phylogenomic analyses also suggested that introgression has occurred during the evolutionary history of the clade. This suggests that, as diversification progressed, interspecific hybridization occurred among species, but became infrequent as lineages diverged from one another and evolved reproductive barriers. Species now coexist in partial sympatry, and experience limited hybridization between close relatives. Additional research is needed to better understand the role that introgression may have played in adaptation and diversification of Mascarene Diospyros, and its relevance for conservation.


Assuntos
Isolamento Reprodutivo , Simpatria , Ecossistema , Fluxo Gênico , Hibridização Genética , Filogenia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA